Strongly Quasiconvex Quadratic Functions
Publications de l'Institut Mathématique, _N_S_53 (1993) no. 67, p. 153 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

A quadratic function is quasiconvex in $R^n$ if and only if it is convex [3]. However, this is not true in $R^n_+$. We prove that a quadratic function is strongly quasiconvex in a convex cone $K$ ($0\in K$, $\int K \ne \emptyset$) if and only if it is strongly convex.
Classification : 90C30
@article{PIM_1993_N_S_53_67_a20,
     author = {Milan Jovanovi\'c},
     title = {Strongly {Quasiconvex} {Quadratic} {Functions}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {153 },
     publisher = {mathdoc},
     volume = {_N_S_53},
     number = {67},
     year = {1993},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_1993_N_S_53_67_a20/}
}
TY  - JOUR
AU  - Milan Jovanović
TI  - Strongly Quasiconvex Quadratic Functions
JO  - Publications de l'Institut Mathématique
PY  - 1993
SP  - 153 
VL  - _N_S_53
IS  - 67
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_1993_N_S_53_67_a20/
LA  - en
ID  - PIM_1993_N_S_53_67_a20
ER  - 
%0 Journal Article
%A Milan Jovanović
%T Strongly Quasiconvex Quadratic Functions
%J Publications de l'Institut Mathématique
%D 1993
%P 153 
%V _N_S_53
%N 67
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_1993_N_S_53_67_a20/
%G en
%F PIM_1993_N_S_53_67_a20
Milan Jovanović. Strongly Quasiconvex Quadratic Functions. Publications de l'Institut Mathématique, _N_S_53 (1993) no. 67, p. 153 . http://geodesic.mathdoc.fr/item/PIM_1993_N_S_53_67_a20/