Strongly Quasiconvex Quadratic Functions
Publications de l'Institut Mathématique, _N_S_53 (1993) no. 67, p. 153
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
A quadratic function is quasiconvex in $R^n$ if and only if
it is convex [3]. However, this is not true in $R^n_+$. We prove that a
quadratic function is strongly quasiconvex in a convex cone $K$ ($0\in K$,
$\int K \ne \emptyset$) if and only if it is strongly convex.
Classification :
90C30
@article{PIM_1993_N_S_53_67_a20,
author = {Milan Jovanovi\'c},
title = {Strongly {Quasiconvex} {Quadratic} {Functions}},
journal = {Publications de l'Institut Math\'ematique},
pages = {153 },
year = {1993},
volume = {_N_S_53},
number = {67},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_1993_N_S_53_67_a20/}
}
Milan Jovanović. Strongly Quasiconvex Quadratic Functions. Publications de l'Institut Mathématique, _N_S_53 (1993) no. 67, p. 153 . http://geodesic.mathdoc.fr/item/PIM_1993_N_S_53_67_a20/