Curvature Pinching for Odd-dimensional Minimal Submanifolds in a Sphere
Publications de l'Institut Mathématique, _N_S_53 (1993) no. 67, p. 122
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
Using Gauchman's method, we have improved Simons' pinching
constant (for codimension $p\geq 3-2/(n-1)$) and Ejiri's Ricci
curvature pinching constant for odd-dimensional minimal submanifolds
in a sphere.
Classification :
53C40 53C20
@article{PIM_1993_N_S_53_67_a16,
author = {Li Haizhong},
title = {Curvature {Pinching} for {Odd-dimensional} {Minimal} {Submanifolds} in a {Sphere}},
journal = {Publications de l'Institut Math\'ematique},
pages = {122 },
year = {1993},
volume = {_N_S_53},
number = {67},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_1993_N_S_53_67_a16/}
}
Li Haizhong. Curvature Pinching for Odd-dimensional Minimal Submanifolds in a Sphere. Publications de l'Institut Mathématique, _N_S_53 (1993) no. 67, p. 122 . http://geodesic.mathdoc.fr/item/PIM_1993_N_S_53_67_a16/