Curvature Pinching for Odd-dimensional Minimal Submanifolds in a Sphere
Publications de l'Institut Mathématique, _N_S_53 (1993) no. 67, p. 122 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

Using Gauchman's method, we have improved Simons' pinching constant (for codimension $p\geq 3-2/(n-1)$) and Ejiri's Ricci curvature pinching constant for odd-dimensional minimal submanifolds in a sphere.
Classification : 53C40 53C20
@article{PIM_1993_N_S_53_67_a16,
     author = {Li Haizhong},
     title = {Curvature {Pinching} for {Odd-dimensional} {Minimal} {Submanifolds} in a {Sphere}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {122 },
     publisher = {mathdoc},
     volume = {_N_S_53},
     number = {67},
     year = {1993},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_1993_N_S_53_67_a16/}
}
TY  - JOUR
AU  - Li Haizhong
TI  - Curvature Pinching for Odd-dimensional Minimal Submanifolds in a Sphere
JO  - Publications de l'Institut Mathématique
PY  - 1993
SP  - 122 
VL  - _N_S_53
IS  - 67
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_1993_N_S_53_67_a16/
LA  - en
ID  - PIM_1993_N_S_53_67_a16
ER  - 
%0 Journal Article
%A Li Haizhong
%T Curvature Pinching for Odd-dimensional Minimal Submanifolds in a Sphere
%J Publications de l'Institut Mathématique
%D 1993
%P 122 
%V _N_S_53
%N 67
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_1993_N_S_53_67_a16/
%G en
%F PIM_1993_N_S_53_67_a16
Li Haizhong. Curvature Pinching for Odd-dimensional Minimal Submanifolds in a Sphere. Publications de l'Institut Mathématique, _N_S_53 (1993) no. 67, p. 122 . http://geodesic.mathdoc.fr/item/PIM_1993_N_S_53_67_a16/