Embedding Derivatives of M-harmonic Tent Spaces Into Lebesgue Spaces
Publications de l'Institut Mathématique, _N_S_52 (1992) no. 66, p. 43 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

A characterization is given of those measures $\mu$ on $B$, the open unit ball in $\Bbb C^n$, such that differentiation of order $m$ maps the $\Cal M$-harmonic tent space $\Cal H^p$ boundedly into $L^q(\mu)$, $0
Classification : 32A35
@article{PIM_1992_N_S_52_66_a8,
     author = {Miroljub Jevti\'c},
     title = {Embedding {Derivatives} of {M-harmonic} {Tent} {Spaces} {Into} {Lebesgue} {Spaces}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {43 },
     publisher = {mathdoc},
     volume = {_N_S_52},
     number = {66},
     year = {1992},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_1992_N_S_52_66_a8/}
}
TY  - JOUR
AU  - Miroljub Jevtić
TI  - Embedding Derivatives of M-harmonic Tent Spaces Into Lebesgue Spaces
JO  - Publications de l'Institut Mathématique
PY  - 1992
SP  - 43 
VL  - _N_S_52
IS  - 66
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_1992_N_S_52_66_a8/
LA  - en
ID  - PIM_1992_N_S_52_66_a8
ER  - 
%0 Journal Article
%A Miroljub Jevtić
%T Embedding Derivatives of M-harmonic Tent Spaces Into Lebesgue Spaces
%J Publications de l'Institut Mathématique
%D 1992
%P 43 
%V _N_S_52
%N 66
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_1992_N_S_52_66_a8/
%G en
%F PIM_1992_N_S_52_66_a8
Miroljub Jevtić. Embedding Derivatives of M-harmonic Tent Spaces Into Lebesgue Spaces. Publications de l'Institut Mathématique, _N_S_52 (1992) no. 66, p. 43 . http://geodesic.mathdoc.fr/item/PIM_1992_N_S_52_66_a8/