Embedding Derivatives of M-harmonic Tent Spaces Into Lebesgue Spaces
Publications de l'Institut Mathématique, _N_S_52 (1992) no. 66, p. 43
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
A characterization is given of those measures $\mu$ on $B$,
the open unit ball in $\Bbb C^n$, such that differentiation of order $m$
maps the $\Cal M$-harmonic tent space $\Cal H^p$ boundedly into $L^q(\mu)$,
$0
Classification :
32A35
@article{PIM_1992_N_S_52_66_a8,
author = {Miroljub Jevti\'c},
title = {Embedding {Derivatives} of {M-harmonic} {Tent} {Spaces} {Into} {Lebesgue} {Spaces}},
journal = {Publications de l'Institut Math\'ematique},
pages = {43 },
publisher = {mathdoc},
volume = {_N_S_52},
number = {66},
year = {1992},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_1992_N_S_52_66_a8/}
}
TY - JOUR AU - Miroljub Jevtić TI - Embedding Derivatives of M-harmonic Tent Spaces Into Lebesgue Spaces JO - Publications de l'Institut Mathématique PY - 1992 SP - 43 VL - _N_S_52 IS - 66 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PIM_1992_N_S_52_66_a8/ LA - en ID - PIM_1992_N_S_52_66_a8 ER -
Miroljub Jevtić. Embedding Derivatives of M-harmonic Tent Spaces Into Lebesgue Spaces. Publications de l'Institut Mathématique, _N_S_52 (1992) no. 66, p. 43 . http://geodesic.mathdoc.fr/item/PIM_1992_N_S_52_66_a8/