On the Fekete-Szego Theorem for Close-to-convex Functions
Publications de l'Institut Mathématique, _N_S_52 (1992) no. 66, p. 18
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
Let $K(\beta)$ be the class of normalised close-to-convex
functions with order $\beta\ge0$, defined in the unit disc $D$ by
$
łeft|\arg e^{iłambda}\dfrac{zf'(z)}{g(z)}\right|łe\dfrac{\pi\beta}{2},
$
for $|\lambda|\pi/2$ and $g$ starlike in $D$. For $f\in K(\beta)$ with
$f(z)=z+a_2z^2+a_3z^3+\cdots$ and $z\in D$, sharp bounds are given for
$|a_3-\mu a_2^2|$ for real $\mu$.
Classification :
30C45
@article{PIM_1992_N_S_52_66_a4,
author = {A. Chonweerayoot and D. K. Thomas and W. Upakarnitikaset},
title = {On the {Fekete-Szego} {Theorem} for {Close-to-convex} {Functions}},
journal = {Publications de l'Institut Math\'ematique},
pages = {18 },
publisher = {mathdoc},
volume = {_N_S_52},
number = {66},
year = {1992},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_1992_N_S_52_66_a4/}
}
TY - JOUR AU - A. Chonweerayoot AU - D. K. Thomas AU - W. Upakarnitikaset TI - On the Fekete-Szego Theorem for Close-to-convex Functions JO - Publications de l'Institut Mathématique PY - 1992 SP - 18 VL - _N_S_52 IS - 66 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PIM_1992_N_S_52_66_a4/ LA - en ID - PIM_1992_N_S_52_66_a4 ER -
%0 Journal Article %A A. Chonweerayoot %A D. K. Thomas %A W. Upakarnitikaset %T On the Fekete-Szego Theorem for Close-to-convex Functions %J Publications de l'Institut Mathématique %D 1992 %P 18 %V _N_S_52 %N 66 %I mathdoc %U http://geodesic.mathdoc.fr/item/PIM_1992_N_S_52_66_a4/ %G en %F PIM_1992_N_S_52_66_a4
A. Chonweerayoot; D. K. Thomas; W. Upakarnitikaset. On the Fekete-Szego Theorem for Close-to-convex Functions. Publications de l'Institut Mathématique, _N_S_52 (1992) no. 66, p. 18 . http://geodesic.mathdoc.fr/item/PIM_1992_N_S_52_66_a4/