On the Fekete-Szego Theorem for Close-to-convex Functions
Publications de l'Institut Mathématique, _N_S_52 (1992) no. 66, p. 18 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

Let $K(\beta)$ be the class of normalised close-to-convex functions with order $\beta\ge0$, defined in the unit disc $D$ by $ łeft|\arg e^{iłambda}\dfrac{zf'(z)}{g(z)}\right|łe\dfrac{\pi\beta}{2}, $ for $|\lambda|\pi/2$ and $g$ starlike in $D$. For $f\in K(\beta)$ with $f(z)=z+a_2z^2+a_3z^3+\cdots$ and $z\in D$, sharp bounds are given for $|a_3-\mu a_2^2|$ for real $\mu$.
Classification : 30C45
@article{PIM_1992_N_S_52_66_a4,
     author = {A. Chonweerayoot and D. K. Thomas and W. Upakarnitikaset},
     title = {On the {Fekete-Szego} {Theorem} for {Close-to-convex} {Functions}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {18 },
     publisher = {mathdoc},
     volume = {_N_S_52},
     number = {66},
     year = {1992},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_1992_N_S_52_66_a4/}
}
TY  - JOUR
AU  - A. Chonweerayoot
AU  - D. K. Thomas
AU  - W. Upakarnitikaset
TI  - On the Fekete-Szego Theorem for Close-to-convex Functions
JO  - Publications de l'Institut Mathématique
PY  - 1992
SP  - 18 
VL  - _N_S_52
IS  - 66
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_1992_N_S_52_66_a4/
LA  - en
ID  - PIM_1992_N_S_52_66_a4
ER  - 
%0 Journal Article
%A A. Chonweerayoot
%A D. K. Thomas
%A W. Upakarnitikaset
%T On the Fekete-Szego Theorem for Close-to-convex Functions
%J Publications de l'Institut Mathématique
%D 1992
%P 18 
%V _N_S_52
%N 66
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_1992_N_S_52_66_a4/
%G en
%F PIM_1992_N_S_52_66_a4
A. Chonweerayoot; D. K. Thomas; W. Upakarnitikaset. On the Fekete-Szego Theorem for Close-to-convex Functions. Publications de l'Institut Mathématique, _N_S_52 (1992) no. 66, p. 18 . http://geodesic.mathdoc.fr/item/PIM_1992_N_S_52_66_a4/