Power Moments of the Error Term for the Approximate Functional Equation of the Riemann Zeta-function
Publications de l'Institut Mathématique, _N_S_52 (1992) no. 66, p. 10 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

Let $\zeta(s)$ be the Riemann zeta-function, $d(n)$ the number of positive divisors of the integer $n$, and $ R(s;t/2\pi) =\zeta^2(s) -\sum_{nłe t/2\pi}\!\!\!\strut'\enskip d(n)n^{-s} -\chi^2(s) \sum_{nłe t/2\pi}\!\!\!\strut'\enskip d(n)n^{s-1}, $ where $ \chi(s)=2^s\pi^{s-1}\sin(\frac12\pi s)\Gamma(1-s). $ We obtain the following power moment estimates: $ \int_1^T |R(\frac12+it;t/2\pi)|^A dt łl \cases T^{1-\frac14A+\vaeepsilon},0łe Ałe4,\\ 1,>4.\endcases $
Classification : 11M06
@article{PIM_1992_N_S_52_66_a2,
     author = {Isao Kiuchi},
     title = {Power {Moments} of the {Error} {Term} for the {Approximate} {Functional} {Equation} of the {Riemann} {Zeta-function}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {10 },
     publisher = {mathdoc},
     volume = {_N_S_52},
     number = {66},
     year = {1992},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_1992_N_S_52_66_a2/}
}
TY  - JOUR
AU  - Isao Kiuchi
TI  - Power Moments of the Error Term for the Approximate Functional Equation of the Riemann Zeta-function
JO  - Publications de l'Institut Mathématique
PY  - 1992
SP  - 10 
VL  - _N_S_52
IS  - 66
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_1992_N_S_52_66_a2/
LA  - en
ID  - PIM_1992_N_S_52_66_a2
ER  - 
%0 Journal Article
%A Isao Kiuchi
%T Power Moments of the Error Term for the Approximate Functional Equation of the Riemann Zeta-function
%J Publications de l'Institut Mathématique
%D 1992
%P 10 
%V _N_S_52
%N 66
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_1992_N_S_52_66_a2/
%G en
%F PIM_1992_N_S_52_66_a2
Isao Kiuchi. Power Moments of the Error Term for the Approximate Functional Equation of the Riemann Zeta-function. Publications de l'Institut Mathématique, _N_S_52 (1992) no. 66, p. 10 . http://geodesic.mathdoc.fr/item/PIM_1992_N_S_52_66_a2/