Some Commutativity Theorems for S-unital Rings With Constraints on Commutators
Publications de l'Institut Mathématique, _N_S_52 (1992) no. 66, p. 86 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

Continuing the investigation of [1], [2], [3] and [10], we prove here some commutativity theorems for $s$-unital rings $R$ satisfying the polynomial identity $x^t[x^n,y]y^{t'} =\pm x^{s'}[x,y^m]y^s$, resp. $x^t[x^n,y]y^{t'} =\pm y^s[x,y^m]x^{s'}$, where $m,n,s,s',t$ and $t'$ are given non-negative integers such that $m>0$ or $n>0$ and $t+n\ne s'+1$ or $m+s\ne t'+1$ for $m=n$. The additional assumption in these theorems concern some torsion freeness of commutators in$R$.
Classification : 16A76
Keywords: Commutativity of $s$-unital rings, polynomial identity, torsion freeness of commutators.
@article{PIM_1992_N_S_52_66_a13,
     author = {H.A.S. Abujabal and Veselin Peri\'c},
     title = {Some {Commutativity} {Theorems} for {S-unital} {Rings} {With} {Constraints} on {Commutators}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {86 },
     publisher = {mathdoc},
     volume = {_N_S_52},
     number = {66},
     year = {1992},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_1992_N_S_52_66_a13/}
}
TY  - JOUR
AU  - H.A.S. Abujabal
AU  - Veselin Perić
TI  - Some Commutativity Theorems for S-unital Rings With Constraints on Commutators
JO  - Publications de l'Institut Mathématique
PY  - 1992
SP  - 86 
VL  - _N_S_52
IS  - 66
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_1992_N_S_52_66_a13/
LA  - en
ID  - PIM_1992_N_S_52_66_a13
ER  - 
%0 Journal Article
%A H.A.S. Abujabal
%A Veselin Perić
%T Some Commutativity Theorems for S-unital Rings With Constraints on Commutators
%J Publications de l'Institut Mathématique
%D 1992
%P 86 
%V _N_S_52
%N 66
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_1992_N_S_52_66_a13/
%G en
%F PIM_1992_N_S_52_66_a13
H.A.S. Abujabal; Veselin Perić. Some Commutativity Theorems for S-unital Rings With Constraints on Commutators. Publications de l'Institut Mathématique, _N_S_52 (1992) no. 66, p. 86 . http://geodesic.mathdoc.fr/item/PIM_1992_N_S_52_66_a13/