Some Commutativity Theorems for S-unital Rings With Constraints on Commutators
Publications de l'Institut Mathématique, _N_S_52 (1992) no. 66, p. 86
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
Continuing the investigation of [1], [2], [3] and [10], we
prove here some commutativity theorems for $s$-unital rings $R$
satisfying the polynomial identity $x^t[x^n,y]y^{t'}
=\pm x^{s'}[x,y^m]y^s$, resp. $x^t[x^n,y]y^{t'} =\pm y^s[x,y^m]x^{s'}$,
where $m,n,s,s',t$ and $t'$ are given non-negative integers such that
$m>0$ or $n>0$ and $t+n\ne s'+1$ or $m+s\ne t'+1$ for $m=n$. The
additional assumption in these theorems concern some torsion freeness
of commutators in$R$.
Classification :
16A76
Keywords: Commutativity of $s$-unital rings, polynomial identity, torsion freeness of commutators.
Keywords: Commutativity of $s$-unital rings, polynomial identity, torsion freeness of commutators.
@article{PIM_1992_N_S_52_66_a13,
author = {H.A.S. Abujabal and Veselin Peri\'c},
title = {Some {Commutativity} {Theorems} for {S-unital} {Rings} {With} {Constraints} on {Commutators}},
journal = {Publications de l'Institut Math\'ematique},
pages = {86 },
year = {1992},
volume = {_N_S_52},
number = {66},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_1992_N_S_52_66_a13/}
}
TY - JOUR AU - H.A.S. Abujabal AU - Veselin Perić TI - Some Commutativity Theorems for S-unital Rings With Constraints on Commutators JO - Publications de l'Institut Mathématique PY - 1992 SP - 86 VL - _N_S_52 IS - 66 UR - http://geodesic.mathdoc.fr/item/PIM_1992_N_S_52_66_a13/ LA - en ID - PIM_1992_N_S_52_66_a13 ER -
%0 Journal Article %A H.A.S. Abujabal %A Veselin Perić %T Some Commutativity Theorems for S-unital Rings With Constraints on Commutators %J Publications de l'Institut Mathématique %D 1992 %P 86 %V _N_S_52 %N 66 %U http://geodesic.mathdoc.fr/item/PIM_1992_N_S_52_66_a13/ %G en %F PIM_1992_N_S_52_66_a13
H.A.S. Abujabal; Veselin Perić. Some Commutativity Theorems for S-unital Rings With Constraints on Commutators. Publications de l'Institut Mathématique, _N_S_52 (1992) no. 66, p. 86 . http://geodesic.mathdoc.fr/item/PIM_1992_N_S_52_66_a13/