Some Commutativity Theorems for S-unital Rings With Constraints on Commutators
Publications de l'Institut Mathématique, _N_S_52 (1992) no. 66, p. 86

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

Continuing the investigation of [1], [2], [3] and [10], we prove here some commutativity theorems for $s$-unital rings $R$ satisfying the polynomial identity $x^t[x^n,y]y^{t'} =\pm x^{s'}[x,y^m]y^s$, resp. $x^t[x^n,y]y^{t'} =\pm y^s[x,y^m]x^{s'}$, where $m,n,s,s',t$ and $t'$ are given non-negative integers such that $m>0$ or $n>0$ and $t+n\ne s'+1$ or $m+s\ne t'+1$ for $m=n$. The additional assumption in these theorems concern some torsion freeness of commutators in$R$.
Classification : 16A76
Keywords: Commutativity of $s$-unital rings, polynomial identity, torsion freeness of commutators.
@article{PIM_1992_N_S_52_66_a13,
     author = {H.A.S. Abujabal and Veselin Peri\'c},
     title = {Some {Commutativity} {Theorems} for {S-unital} {Rings} {With} {Constraints} on {Commutators}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {86 },
     publisher = {mathdoc},
     volume = {_N_S_52},
     number = {66},
     year = {1992},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_1992_N_S_52_66_a13/}
}
TY  - JOUR
AU  - H.A.S. Abujabal
AU  - Veselin Perić
TI  - Some Commutativity Theorems for S-unital Rings With Constraints on Commutators
JO  - Publications de l'Institut Mathématique
PY  - 1992
SP  - 86 
VL  - _N_S_52
IS  - 66
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_1992_N_S_52_66_a13/
LA  - en
ID  - PIM_1992_N_S_52_66_a13
ER  - 
%0 Journal Article
%A H.A.S. Abujabal
%A Veselin Perić
%T Some Commutativity Theorems for S-unital Rings With Constraints on Commutators
%J Publications de l'Institut Mathématique
%D 1992
%P 86 
%V _N_S_52
%N 66
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_1992_N_S_52_66_a13/
%G en
%F PIM_1992_N_S_52_66_a13
H.A.S. Abujabal; Veselin Perić. Some Commutativity Theorems for S-unital Rings With Constraints on Commutators. Publications de l'Institut Mathématique, _N_S_52 (1992) no. 66, p. 86 . http://geodesic.mathdoc.fr/item/PIM_1992_N_S_52_66_a13/