Some Commutativity Theorems for S-unital Rings With Constraints on Commutators
Publications de l'Institut Mathématique, _N_S_52 (1992) no. 66, p. 86
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
Continuing the investigation of [1], [2], [3] and [10], we
prove here some commutativity theorems for $s$-unital rings $R$
satisfying the polynomial identity $x^t[x^n,y]y^{t'}
=\pm x^{s'}[x,y^m]y^s$, resp. $x^t[x^n,y]y^{t'} =\pm y^s[x,y^m]x^{s'}$,
where $m,n,s,s',t$ and $t'$ are given non-negative integers such that
$m>0$ or $n>0$ and $t+n\ne s'+1$ or $m+s\ne t'+1$ for $m=n$. The
additional assumption in these theorems concern some torsion freeness
of commutators in$R$.
Classification :
16A76
Keywords: Commutativity of $s$-unital rings, polynomial identity, torsion freeness of commutators.
Keywords: Commutativity of $s$-unital rings, polynomial identity, torsion freeness of commutators.
@article{PIM_1992_N_S_52_66_a13,
author = {H.A.S. Abujabal and Veselin Peri\'c},
title = {Some {Commutativity} {Theorems} for {S-unital} {Rings} {With} {Constraints} on {Commutators}},
journal = {Publications de l'Institut Math\'ematique},
pages = {86 },
publisher = {mathdoc},
volume = {_N_S_52},
number = {66},
year = {1992},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_1992_N_S_52_66_a13/}
}
TY - JOUR AU - H.A.S. Abujabal AU - Veselin Perić TI - Some Commutativity Theorems for S-unital Rings With Constraints on Commutators JO - Publications de l'Institut Mathématique PY - 1992 SP - 86 VL - _N_S_52 IS - 66 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PIM_1992_N_S_52_66_a13/ LA - en ID - PIM_1992_N_S_52_66_a13 ER -
%0 Journal Article %A H.A.S. Abujabal %A Veselin Perić %T Some Commutativity Theorems for S-unital Rings With Constraints on Commutators %J Publications de l'Institut Mathématique %D 1992 %P 86 %V _N_S_52 %N 66 %I mathdoc %U http://geodesic.mathdoc.fr/item/PIM_1992_N_S_52_66_a13/ %G en %F PIM_1992_N_S_52_66_a13
H.A.S. Abujabal; Veselin Perić. Some Commutativity Theorems for S-unital Rings With Constraints on Commutators. Publications de l'Institut Mathématique, _N_S_52 (1992) no. 66, p. 86 . http://geodesic.mathdoc.fr/item/PIM_1992_N_S_52_66_a13/