On Best Simultaneous Approximation
Publications de l'Institut Mathématique, _N_S_52 (1992) no. 66, p. 77 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

For nonempty subsets $F$ and $K$ of a nonempty set $V$ and a real valued function $f$ on $X\times X$ the notion of $f$-best simultaneous approximation to $F$ from $K$ is introduced as an extension of the known notion of best simultaneous approximation in normed linear spaces. The concept of uniformly quasi-convex function on a vector space is also introduced. Sufficient conditions for the existence and uniqueness of $f$-best simultaneous approximation are obtained.
Classification : 41A28 41A50 41A52 54H99 46A99
@article{PIM_1992_N_S_52_66_a12,
     author = {S.V.R. Naidu},
     title = {On {Best} {Simultaneous} {Approximation}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {77 },
     publisher = {mathdoc},
     volume = {_N_S_52},
     number = {66},
     year = {1992},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_1992_N_S_52_66_a12/}
}
TY  - JOUR
AU  - S.V.R. Naidu
TI  - On Best Simultaneous Approximation
JO  - Publications de l'Institut Mathématique
PY  - 1992
SP  - 77 
VL  - _N_S_52
IS  - 66
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_1992_N_S_52_66_a12/
LA  - en
ID  - PIM_1992_N_S_52_66_a12
ER  - 
%0 Journal Article
%A S.V.R. Naidu
%T On Best Simultaneous Approximation
%J Publications de l'Institut Mathématique
%D 1992
%P 77 
%V _N_S_52
%N 66
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_1992_N_S_52_66_a12/
%G en
%F PIM_1992_N_S_52_66_a12
S.V.R. Naidu. On Best Simultaneous Approximation. Publications de l'Institut Mathématique, _N_S_52 (1992) no. 66, p. 77 . http://geodesic.mathdoc.fr/item/PIM_1992_N_S_52_66_a12/