On Best Simultaneous Approximation
Publications de l'Institut Mathématique, _N_S_52 (1992) no. 66, p. 77
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
For nonempty subsets $F$ and $K$ of a nonempty set $V$ and a
real valued function $f$ on $X\times X$ the notion of $f$-best
simultaneous approximation to $F$ from $K$ is introduced as an
extension of the known notion of best simultaneous approximation in
normed linear spaces. The concept of uniformly quasi-convex function on
a vector space is also introduced. Sufficient conditions for the
existence and uniqueness of $f$-best simultaneous approximation are
obtained.
Classification :
41A28 41A50 41A52 54H99 46A99
@article{PIM_1992_N_S_52_66_a12,
author = {S.V.R. Naidu},
title = {On {Best} {Simultaneous} {Approximation}},
journal = {Publications de l'Institut Math\'ematique},
pages = {77 },
publisher = {mathdoc},
volume = {_N_S_52},
number = {66},
year = {1992},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_1992_N_S_52_66_a12/}
}
S.V.R. Naidu. On Best Simultaneous Approximation. Publications de l'Institut Mathématique, _N_S_52 (1992) no. 66, p. 77 . http://geodesic.mathdoc.fr/item/PIM_1992_N_S_52_66_a12/