Independent Vertex Sets in Some Compound Graphs
Publications de l'Institut Mathématique, _N_S_52 (1992) no. 66, p. 5 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

Let $G$ be an $n$-vertex graph and $R_1,R_2,\dots,R_n$ distinct rooted graphs. The compound graph $G[R_1,R_2,\dots,R_n]$ is obtained by identifying the root of $R_i$ with the $i$-th vertex of $G$, $i=1,2,\dots,n$. We determine the number of independent vertex sets and the independence polynomial of $G[R_1,R_2,\dots,R_n]$. Several special cases of these results are pointed out.
Classification : 05C70 05C99
@article{PIM_1992_N_S_52_66_a1,
     author = {Ivan Gutman},
     title = {Independent {Vertex} {Sets} in {Some} {Compound} {Graphs}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {5 },
     publisher = {mathdoc},
     volume = {_N_S_52},
     number = {66},
     year = {1992},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_1992_N_S_52_66_a1/}
}
TY  - JOUR
AU  - Ivan Gutman
TI  - Independent Vertex Sets in Some Compound Graphs
JO  - Publications de l'Institut Mathématique
PY  - 1992
SP  - 5 
VL  - _N_S_52
IS  - 66
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_1992_N_S_52_66_a1/
LA  - en
ID  - PIM_1992_N_S_52_66_a1
ER  - 
%0 Journal Article
%A Ivan Gutman
%T Independent Vertex Sets in Some Compound Graphs
%J Publications de l'Institut Mathématique
%D 1992
%P 5 
%V _N_S_52
%N 66
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_1992_N_S_52_66_a1/
%G en
%F PIM_1992_N_S_52_66_a1
Ivan Gutman. Independent Vertex Sets in Some Compound Graphs. Publications de l'Institut Mathématique, _N_S_52 (1992) no. 66, p. 5 . http://geodesic.mathdoc.fr/item/PIM_1992_N_S_52_66_a1/