Independent Vertex Sets in Some Compound Graphs
Publications de l'Institut Mathématique, _N_S_52 (1992) no. 66, p. 5
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
Let $G$ be an $n$-vertex graph and $R_1,R_2,\dots,R_n$
distinct rooted graphs. The compound graph $G[R_1,R_2,\dots,R_n]$ is
obtained by identifying the root of $R_i$ with the $i$-th vertex of
$G$, $i=1,2,\dots,n$. We determine the number of independent vertex
sets and the independence polynomial of $G[R_1,R_2,\dots,R_n]$. Several
special cases of these results are pointed out.
Classification :
05C70 05C99
@article{PIM_1992_N_S_52_66_a1,
author = {Ivan Gutman},
title = {Independent {Vertex} {Sets} in {Some} {Compound} {Graphs}},
journal = {Publications de l'Institut Math\'ematique},
pages = {5 },
year = {1992},
volume = {_N_S_52},
number = {66},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_1992_N_S_52_66_a1/}
}
Ivan Gutman. Independent Vertex Sets in Some Compound Graphs. Publications de l'Institut Mathématique, _N_S_52 (1992) no. 66, p. 5 . http://geodesic.mathdoc.fr/item/PIM_1992_N_S_52_66_a1/