Fragments of Complete Extensions of PA and Mcdowell-Specker's Theorem
Publications de l'Institut Mathématique, _N_S_52 (1992) no. 66, p. 1 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

We generalise Theorem 1.4 of [2] and prove that for every complete extension {\bf T} of {\bf PA} and any $n\in\omega$ there exists a model for $\Sigma_n$--fragment of {\bf T} that is not extendable (that is, a model with no proper strong elementary end-extension.) This is accomplished using a model called $\Sigma_n$-atomic. This result can be interpreted as ``McDowell--Specker's Theorem does not hold for $\Sigma_n$-fragments of {\bf PA}''.
Classification : 03C20 03C62
@article{PIM_1992_N_S_52_66_a0,
     author = {Ilijas Farah},
     title = {Fragments of {Complete} {Extensions} of {PA} and {Mcdowell-Specker's} {Theorem}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {1 },
     publisher = {mathdoc},
     volume = {_N_S_52},
     number = {66},
     year = {1992},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_1992_N_S_52_66_a0/}
}
TY  - JOUR
AU  - Ilijas Farah
TI  - Fragments of Complete Extensions of PA and Mcdowell-Specker's Theorem
JO  - Publications de l'Institut Mathématique
PY  - 1992
SP  - 1 
VL  - _N_S_52
IS  - 66
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_1992_N_S_52_66_a0/
LA  - en
ID  - PIM_1992_N_S_52_66_a0
ER  - 
%0 Journal Article
%A Ilijas Farah
%T Fragments of Complete Extensions of PA and Mcdowell-Specker's Theorem
%J Publications de l'Institut Mathématique
%D 1992
%P 1 
%V _N_S_52
%N 66
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_1992_N_S_52_66_a0/
%G en
%F PIM_1992_N_S_52_66_a0
Ilijas Farah. Fragments of Complete Extensions of PA and Mcdowell-Specker's Theorem. Publications de l'Institut Mathématique, _N_S_52 (1992) no. 66, p. 1 . http://geodesic.mathdoc.fr/item/PIM_1992_N_S_52_66_a0/