Fragments of Complete Extensions of PA and Mcdowell-Specker's Theorem
Publications de l'Institut Mathématique, _N_S_52 (1992) no. 66, p. 1
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
We generalise Theorem 1.4 of [2] and prove that for every
complete extension {\bf T} of {\bf PA} and any $n\in\omega$ there
exists a model for $\Sigma_n$--fragment of {\bf T} that is not
extendable (that is, a model with no proper strong elementary
end-extension.) This is accomplished using a model called
$\Sigma_n$-atomic. This result can be interpreted as
``McDowell--Specker's Theorem does not hold for $\Sigma_n$-fragments of
{\bf PA}''.
Classification :
03C20 03C62
@article{PIM_1992_N_S_52_66_a0,
author = {Ilijas Farah},
title = {Fragments of {Complete} {Extensions} of {PA} and {Mcdowell-Specker's} {Theorem}},
journal = {Publications de l'Institut Math\'ematique},
pages = {1 },
publisher = {mathdoc},
volume = {_N_S_52},
number = {66},
year = {1992},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_1992_N_S_52_66_a0/}
}
Ilijas Farah. Fragments of Complete Extensions of PA and Mcdowell-Specker's Theorem. Publications de l'Institut Mathématique, _N_S_52 (1992) no. 66, p. 1 . http://geodesic.mathdoc.fr/item/PIM_1992_N_S_52_66_a0/