Sesquilinear and Quadratic Forms on Modules Over *-algebras
Publications de l'Institut Mathématique, _N_S_51 (1992) no. 65, p. 81
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
We define three new quadratic forms on a module over a
$*$-algebra. It is shown that for each quadratic form with a certain
property, there exists a sesquilinear form such that both forms are
equal to each other. The converse statement is also valid. So far as
application is concerned this result enables us to form new
characterization formulas for an inner product space if we restrict
attention to normed linear spaces.
Classification :
46H05 46K05 46C10
@article{PIM_1992_N_S_51_65_a9,
author = {C.-S. Lin},
title = {Sesquilinear and {Quadratic} {Forms} on {Modules} {Over} *-algebras},
journal = {Publications de l'Institut Math\'ematique},
pages = {81 },
publisher = {mathdoc},
volume = {_N_S_51},
number = {65},
year = {1992},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_1992_N_S_51_65_a9/}
}
C.-S. Lin. Sesquilinear and Quadratic Forms on Modules Over *-algebras. Publications de l'Institut Mathématique, _N_S_51 (1992) no. 65, p. 81 . http://geodesic.mathdoc.fr/item/PIM_1992_N_S_51_65_a9/