Sesquilinear and Quadratic Forms on Modules Over *-algebras
Publications de l'Institut Mathématique, _N_S_51 (1992) no. 65, p. 81 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

We define three new quadratic forms on a module over a $*$-algebra. It is shown that for each quadratic form with a certain property, there exists a sesquilinear form such that both forms are equal to each other. The converse statement is also valid. So far as application is concerned this result enables us to form new characterization formulas for an inner product space if we restrict attention to normed linear spaces.
Classification : 46H05 46K05 46C10
@article{PIM_1992_N_S_51_65_a9,
     author = {C.-S. Lin},
     title = {Sesquilinear and {Quadratic} {Forms} on {Modules} {Over} *-algebras},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {81 },
     publisher = {mathdoc},
     volume = {_N_S_51},
     number = {65},
     year = {1992},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_1992_N_S_51_65_a9/}
}
TY  - JOUR
AU  - C.-S. Lin
TI  - Sesquilinear and Quadratic Forms on Modules Over *-algebras
JO  - Publications de l'Institut Mathématique
PY  - 1992
SP  - 81 
VL  - _N_S_51
IS  - 65
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_1992_N_S_51_65_a9/
LA  - en
ID  - PIM_1992_N_S_51_65_a9
ER  - 
%0 Journal Article
%A C.-S. Lin
%T Sesquilinear and Quadratic Forms on Modules Over *-algebras
%J Publications de l'Institut Mathématique
%D 1992
%P 81 
%V _N_S_51
%N 65
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_1992_N_S_51_65_a9/
%G en
%F PIM_1992_N_S_51_65_a9
C.-S. Lin. Sesquilinear and Quadratic Forms on Modules Over *-algebras. Publications de l'Institut Mathématique, _N_S_51 (1992) no. 65, p. 81 . http://geodesic.mathdoc.fr/item/PIM_1992_N_S_51_65_a9/