Coherent States and Frames in the Bargman Space of Entire Functions
Publications de l'Institut Mathématique, _N_S_51 (1992) no. 65, p. 48
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
A conjecture was given in [3] about the possibility of
decomposition of an arbitrary $f$ in $L^2(R)$ in terms of the family of
functions
$
\f_{mn}(x) =\pi^{-1/4} \exp\{-(1/2) imnab+imxa-(1/2) (x-nb)^2\},
\qquad a,b>0; ab2\pi.
$
We prove this conjecture for $ab2\pi$ and $b$ sufficiently large.
Also, we give some applications for the Bargman space of entire
functions.
Classification :
30B50 47A30
@article{PIM_1992_N_S_51_65_a4,
author = {Milutin Dostani\'c and Darko Milinkovi\'c},
title = {Coherent {States} and {Frames} in the {Bargman} {Space} of {Entire} {Functions}},
journal = {Publications de l'Institut Math\'ematique},
pages = {48 },
year = {1992},
volume = {_N_S_51},
number = {65},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_1992_N_S_51_65_a4/}
}
TY - JOUR AU - Milutin Dostanić AU - Darko Milinković TI - Coherent States and Frames in the Bargman Space of Entire Functions JO - Publications de l'Institut Mathématique PY - 1992 SP - 48 VL - _N_S_51 IS - 65 UR - http://geodesic.mathdoc.fr/item/PIM_1992_N_S_51_65_a4/ LA - en ID - PIM_1992_N_S_51_65_a4 ER -
Milutin Dostanić; Darko Milinković. Coherent States and Frames in the Bargman Space of Entire Functions. Publications de l'Institut Mathématique, _N_S_51 (1992) no. 65, p. 48 . http://geodesic.mathdoc.fr/item/PIM_1992_N_S_51_65_a4/