Coherent States and Frames in the Bargman Space of Entire Functions
Publications de l'Institut Mathématique, _N_S_51 (1992) no. 65, p. 48 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

A conjecture was given in [3] about the possibility of decomposition of an arbitrary $f$ in $L^2(R)$ in terms of the family of functions $ \f_{mn}(x) =\pi^{-1/4} \exp\{-(1/2) imnab+imxa-(1/2) (x-nb)^2\}, \qquad a,b>0; ab2\pi. $ We prove this conjecture for $ab2\pi$ and $b$ sufficiently large. Also, we give some applications for the Bargman space of entire functions.
Classification : 30B50 47A30
@article{PIM_1992_N_S_51_65_a4,
     author = {Milutin Dostani\'c and Darko Milinkovi\'c},
     title = {Coherent {States} and {Frames} in the {Bargman} {Space} of {Entire} {Functions}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {48 },
     publisher = {mathdoc},
     volume = {_N_S_51},
     number = {65},
     year = {1992},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_1992_N_S_51_65_a4/}
}
TY  - JOUR
AU  - Milutin Dostanić
AU  - Darko Milinković
TI  - Coherent States and Frames in the Bargman Space of Entire Functions
JO  - Publications de l'Institut Mathématique
PY  - 1992
SP  - 48 
VL  - _N_S_51
IS  - 65
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_1992_N_S_51_65_a4/
LA  - en
ID  - PIM_1992_N_S_51_65_a4
ER  - 
%0 Journal Article
%A Milutin Dostanić
%A Darko Milinković
%T Coherent States and Frames in the Bargman Space of Entire Functions
%J Publications de l'Institut Mathématique
%D 1992
%P 48 
%V _N_S_51
%N 65
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_1992_N_S_51_65_a4/
%G en
%F PIM_1992_N_S_51_65_a4
Milutin Dostanić; Darko Milinković. Coherent States and Frames in the Bargman Space of Entire Functions. Publications de l'Institut Mathématique, _N_S_51 (1992) no. 65, p. 48 . http://geodesic.mathdoc.fr/item/PIM_1992_N_S_51_65_a4/