On the Numbers of Positive and Negative Eigenvalues of a Graph
Publications de l'Institut Mathématique, _N_S_51 (1992) no. 65, p. 25
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
We consider simple connected graphs with a fixed number of
negative eigenvalues (including their multiplicities). We show that
these graphs have uniformly bounded numbers of positive eigenvalues,
and the last numbers run over a set $[m]=\{1,2,\ldots,m\}$.
Classification :
05C50
@article{PIM_1992_N_S_51_65_a2,
author = {Aleksandar Torga\v{s}ev},
title = {On the {Numbers} of {Positive} and {Negative} {Eigenvalues} of a {Graph}},
journal = {Publications de l'Institut Math\'ematique},
pages = {25 },
year = {1992},
volume = {_N_S_51},
number = {65},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_1992_N_S_51_65_a2/}
}
Aleksandar Torgašev. On the Numbers of Positive and Negative Eigenvalues of a Graph. Publications de l'Institut Mathématique, _N_S_51 (1992) no. 65, p. 25 . http://geodesic.mathdoc.fr/item/PIM_1992_N_S_51_65_a2/