On the Numbers of Positive and Negative Eigenvalues of a Graph
Publications de l'Institut Mathématique, _N_S_51 (1992) no. 65, p. 25
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
We consider simple connected graphs with a fixed number of
negative eigenvalues (including their multiplicities). We show that
these graphs have uniformly bounded numbers of positive eigenvalues,
and the last numbers run over a set $[m]=\{1,2,\ldots,m\}$.
Classification :
05C50
@article{PIM_1992_N_S_51_65_a2,
author = {Aleksandar Torga\v{s}ev},
title = {On the {Numbers} of {Positive} and {Negative} {Eigenvalues} of a {Graph}},
journal = {Publications de l'Institut Math\'ematique},
pages = {25 },
publisher = {mathdoc},
volume = {_N_S_51},
number = {65},
year = {1992},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_1992_N_S_51_65_a2/}
}
Aleksandar Torgašev. On the Numbers of Positive and Negative Eigenvalues of a Graph. Publications de l'Institut Mathématique, _N_S_51 (1992) no. 65, p. 25 . http://geodesic.mathdoc.fr/item/PIM_1992_N_S_51_65_a2/