Optimal Control of a Class of Degenerate Nonlinear Evolution Equations
Publications de l'Institut Mathématique, _N_S_51 (1992) no. 65, p. 125 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

We examine problems of optimal control of systems driven by a nonlinear, degenerate evolution equation. First we establish two existence results for two different types of integral cost criteria. Then we examine the sensitivity of the optimal value on variations of the data. Finally we present an example of a degenerate, nonlinear parabolic optimal control system.
Classification : 49A27
Keywords: Degenerate evolution equation, Gelfand triple, self-adjoint operator, Kuratowski-Mosco convergence, epi-convergence, Dirichlet form
@article{PIM_1992_N_S_51_65_a15,
     author = {Nikolaos S. Papageorgiou},
     title = {Optimal {Control} of a {Class} of {Degenerate} {Nonlinear} {Evolution} {Equations}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {125 },
     publisher = {mathdoc},
     volume = {_N_S_51},
     number = {65},
     year = {1992},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_1992_N_S_51_65_a15/}
}
TY  - JOUR
AU  - Nikolaos S. Papageorgiou
TI  - Optimal Control of a Class of Degenerate Nonlinear Evolution Equations
JO  - Publications de l'Institut Mathématique
PY  - 1992
SP  - 125 
VL  - _N_S_51
IS  - 65
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_1992_N_S_51_65_a15/
LA  - en
ID  - PIM_1992_N_S_51_65_a15
ER  - 
%0 Journal Article
%A Nikolaos S. Papageorgiou
%T Optimal Control of a Class of Degenerate Nonlinear Evolution Equations
%J Publications de l'Institut Mathématique
%D 1992
%P 125 
%V _N_S_51
%N 65
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_1992_N_S_51_65_a15/
%G en
%F PIM_1992_N_S_51_65_a15
Nikolaos S. Papageorgiou. Optimal Control of a Class of Degenerate Nonlinear Evolution Equations. Publications de l'Institut Mathématique, _N_S_51 (1992) no. 65, p. 125 . http://geodesic.mathdoc.fr/item/PIM_1992_N_S_51_65_a15/