On Hypercylinders in Conformally Symmetric Manifolds
Publications de l'Institut Mathématique, _N_S_51 (1992) no. 65, p. 101
Hypercylinders in conformally symmetric manifolds are
considered. The main result is the following theorem: Let $(M,g)$ be a
hypercylinder in a parabolic essentially conformally symmetric manifold
$(N,\widetilde g)$, $\dim N\ge 5$ and let $\widetolde U$ be the subset
od $N$ consisting of all points of $N$ at which the Ricci tensor
$\widetilde S$ of $(N,\widetilde g)$ is not recurrent. If
$\widetilde U\cap M$ is a dense subset of $M$, then $(M,g)$ is a
conformally recurrent manifold.
Classification :
53B25 53B20
@article{PIM_1992_N_S_51_65_a12,
author = {Ryszard Deszcz},
title = {On {Hypercylinders} in {Conformally} {Symmetric} {Manifolds}},
journal = {Publications de l'Institut Math\'ematique},
pages = {101 },
year = {1992},
volume = {_N_S_51},
number = {65},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_1992_N_S_51_65_a12/}
}
Ryszard Deszcz. On Hypercylinders in Conformally Symmetric Manifolds. Publications de l'Institut Mathématique, _N_S_51 (1992) no. 65, p. 101 . http://geodesic.mathdoc.fr/item/PIM_1992_N_S_51_65_a12/