On Hypercylinders in Conformally Symmetric Manifolds
Publications de l'Institut Mathématique, _N_S_51 (1992) no. 65, p. 101 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

Hypercylinders in conformally symmetric manifolds are considered. The main result is the following theorem: Let $(M,g)$ be a hypercylinder in a parabolic essentially conformally symmetric manifold $(N,\widetilde g)$, $\dim N\ge 5$ and let $\widetolde U$ be the subset od $N$ consisting of all points of $N$ at which the Ricci tensor $\widetilde S$ of $(N,\widetilde g)$ is not recurrent. If $\widetilde U\cap M$ is a dense subset of $M$, then $(M,g)$ is a conformally recurrent manifold.
Classification : 53B25 53B20
@article{PIM_1992_N_S_51_65_a12,
     author = {Ryszard Deszcz},
     title = {On {Hypercylinders} in {Conformally} {Symmetric} {Manifolds}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {101 },
     publisher = {mathdoc},
     volume = {_N_S_51},
     number = {65},
     year = {1992},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_1992_N_S_51_65_a12/}
}
TY  - JOUR
AU  - Ryszard Deszcz
TI  - On Hypercylinders in Conformally Symmetric Manifolds
JO  - Publications de l'Institut Mathématique
PY  - 1992
SP  - 101 
VL  - _N_S_51
IS  - 65
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_1992_N_S_51_65_a12/
LA  - en
ID  - PIM_1992_N_S_51_65_a12
ER  - 
%0 Journal Article
%A Ryszard Deszcz
%T On Hypercylinders in Conformally Symmetric Manifolds
%J Publications de l'Institut Mathématique
%D 1992
%P 101 
%V _N_S_51
%N 65
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_1992_N_S_51_65_a12/
%G en
%F PIM_1992_N_S_51_65_a12
Ryszard Deszcz. On Hypercylinders in Conformally Symmetric Manifolds. Publications de l'Institut Mathématique, _N_S_51 (1992) no. 65, p. 101 . http://geodesic.mathdoc.fr/item/PIM_1992_N_S_51_65_a12/