Some Remarks on Isotropic Submanifolds
Publications de l'Institut Mathématique, _N_S_51 (1992) no. 65, p. 94 Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

Voir la notice de l'article

The notion of isotropic submanifolds of an arbitrary Riemannian manifold was first introduced by B. O'Neill. In this paper, we study $n$-dimensional, totally real, isotropic submanifolds of $CP^n(4)$. These submanifolds have been previously studied by H. Naitoh, S. Montiel and F. Urbano under the additional assumption that $M$ is complete. Here we prove some local classification theorems for totally real isotropic submanifolds of the complex projective space.
Classification : 53C40
@article{PIM_1992_N_S_51_65_a11,
     author = {Luc Vrancken},
     title = {Some {Remarks} on {Isotropic} {Submanifolds}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {94 },
     year = {1992},
     volume = {_N_S_51},
     number = {65},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_1992_N_S_51_65_a11/}
}
TY  - JOUR
AU  - Luc Vrancken
TI  - Some Remarks on Isotropic Submanifolds
JO  - Publications de l'Institut Mathématique
PY  - 1992
SP  - 94 
VL  - _N_S_51
IS  - 65
UR  - http://geodesic.mathdoc.fr/item/PIM_1992_N_S_51_65_a11/
LA  - en
ID  - PIM_1992_N_S_51_65_a11
ER  - 
%0 Journal Article
%A Luc Vrancken
%T Some Remarks on Isotropic Submanifolds
%J Publications de l'Institut Mathématique
%D 1992
%P 94 
%V _N_S_51
%N 65
%U http://geodesic.mathdoc.fr/item/PIM_1992_N_S_51_65_a11/
%G en
%F PIM_1992_N_S_51_65_a11
Luc Vrancken. Some Remarks on Isotropic Submanifolds. Publications de l'Institut Mathématique, _N_S_51 (1992) no. 65, p. 94 . http://geodesic.mathdoc.fr/item/PIM_1992_N_S_51_65_a11/