Some Remarks on Isotropic Submanifolds
Publications de l'Institut Mathématique, _N_S_51 (1992) no. 65, p. 94
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
The notion of isotropic submanifolds of an arbitrary
Riemannian manifold was first introduced by B. O'Neill. In this paper,
we study $n$-dimensional, totally real, isotropic submanifolds of
$CP^n(4)$. These submanifolds have been previously studied by H.
Naitoh, S. Montiel and F. Urbano under the additional assumption that
$M$ is complete. Here we prove some local classification theorems for
totally real isotropic submanifolds of the complex projective space.
Classification :
53C40
@article{PIM_1992_N_S_51_65_a11,
author = {Luc Vrancken},
title = {Some {Remarks} on {Isotropic} {Submanifolds}},
journal = {Publications de l'Institut Math\'ematique},
pages = {94 },
year = {1992},
volume = {_N_S_51},
number = {65},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_1992_N_S_51_65_a11/}
}
Luc Vrancken. Some Remarks on Isotropic Submanifolds. Publications de l'Institut Mathématique, _N_S_51 (1992) no. 65, p. 94 . http://geodesic.mathdoc.fr/item/PIM_1992_N_S_51_65_a11/