Note on a Paper by h. l. Montgomery ``omega Theorems for the Riemann Zeta-function''
Publications de l'Institut Mathématique, _N_S_50 (1991) no. 64, p. 51

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

We study Omega theorems for the expression $E=\text{Re}(e^{i\theta} \log \zeta(\sigma_0+it_0))$ where $1/2\le\sigma_01$ and $0\le\theta2\pi$ ($\sigma_0$, $\theta$ fixed) as $t_0\to\infty$. In fact we prove $E\ge C(1-\sigma_0)^{-1} (\log t_0)^{1-\sigma_0}(\log\log t_0)^{-\sigma_0}$ for at least one $t_0$ in $[T^{\varepsilon},T]$ where $C$ is a positive constant. Note that $(1-\sigma_0)^{-1}\to\bb$ as $\sigma_0\to1$.
Classification : 10H05
Keywords: Omega theorems, Riemann Zeta-function, Dirichlet box principle, Dedekind Zeta-function.
@article{PIM_1991_N_S_50_64_a7,
     author = {K. Ramachandra and A. Sankaranarayanan},
     title = {Note on a {Paper} by h. l. {Montgomery} ``omega {Theorems} for the {Riemann} {Zeta-function''}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {51 },
     publisher = {mathdoc},
     volume = {_N_S_50},
     number = {64},
     year = {1991},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_1991_N_S_50_64_a7/}
}
TY  - JOUR
AU  - K. Ramachandra
AU  - A. Sankaranarayanan
TI  - Note on a Paper by h. l. Montgomery ``omega Theorems for the Riemann Zeta-function''
JO  - Publications de l'Institut Mathématique
PY  - 1991
SP  - 51 
VL  - _N_S_50
IS  - 64
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_1991_N_S_50_64_a7/
LA  - en
ID  - PIM_1991_N_S_50_64_a7
ER  - 
%0 Journal Article
%A K. Ramachandra
%A A. Sankaranarayanan
%T Note on a Paper by h. l. Montgomery ``omega Theorems for the Riemann Zeta-function''
%J Publications de l'Institut Mathématique
%D 1991
%P 51 
%V _N_S_50
%N 64
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_1991_N_S_50_64_a7/
%G en
%F PIM_1991_N_S_50_64_a7
K. Ramachandra; A. Sankaranarayanan. Note on a Paper by h. l. Montgomery ``omega Theorems for the Riemann Zeta-function''. Publications de l'Institut Mathématique, _N_S_50 (1991) no. 64, p. 51 . http://geodesic.mathdoc.fr/item/PIM_1991_N_S_50_64_a7/