Some Results on Graphs With at Most two Positive Eigenvalues
Publications de l'Institut Mathématique, _N_S_50 (1991) no. 64, p. 39
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
We determine all graphs $G$ such that $G$ and its
complementary graph $\bar G$ have exactly one (or, respectively,
exactly two) positive eigenvalues.
Classification :
05C50
@article{PIM_1991_N_S_50_64_a6,
author = {Miroslav Petrovi\'c},
title = {Some {Results} on {Graphs} {With} at {Most} two {Positive} {Eigenvalues}},
journal = {Publications de l'Institut Math\'ematique},
pages = {39 },
year = {1991},
volume = {_N_S_50},
number = {64},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_1991_N_S_50_64_a6/}
}
Miroslav Petrović. Some Results on Graphs With at Most two Positive Eigenvalues. Publications de l'Institut Mathématique, _N_S_50 (1991) no. 64, p. 39 . http://geodesic.mathdoc.fr/item/PIM_1991_N_S_50_64_a6/