Some Results on Graphs With at Most two Positive Eigenvalues
Publications de l'Institut Mathématique, _N_S_50 (1991) no. 64, p. 39

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

We determine all graphs $G$ such that $G$ and its complementary graph $\bar G$ have exactly one (or, respectively, exactly two) positive eigenvalues.
Classification : 05C50
@article{PIM_1991_N_S_50_64_a6,
     author = {Miroslav Petrovi\'c},
     title = {Some {Results} on {Graphs} {With} at {Most} two {Positive} {Eigenvalues}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {39 },
     publisher = {mathdoc},
     volume = {_N_S_50},
     number = {64},
     year = {1991},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_1991_N_S_50_64_a6/}
}
TY  - JOUR
AU  - Miroslav Petrović
TI  - Some Results on Graphs With at Most two Positive Eigenvalues
JO  - Publications de l'Institut Mathématique
PY  - 1991
SP  - 39 
VL  - _N_S_50
IS  - 64
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_1991_N_S_50_64_a6/
LA  - en
ID  - PIM_1991_N_S_50_64_a6
ER  - 
%0 Journal Article
%A Miroslav Petrović
%T Some Results on Graphs With at Most two Positive Eigenvalues
%J Publications de l'Institut Mathématique
%D 1991
%P 39 
%V _N_S_50
%N 64
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_1991_N_S_50_64_a6/
%G en
%F PIM_1991_N_S_50_64_a6
Miroslav Petrović. Some Results on Graphs With at Most two Positive Eigenvalues. Publications de l'Institut Mathématique, _N_S_50 (1991) no. 64, p. 39 . http://geodesic.mathdoc.fr/item/PIM_1991_N_S_50_64_a6/