Some Results on Graphs With at Most two Positive Eigenvalues
Publications de l'Institut Mathématique, _N_S_50 (1991) no. 64, p. 39 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

We determine all graphs $G$ such that $G$ and its complementary graph $\bar G$ have exactly one (or, respectively, exactly two) positive eigenvalues.
Classification : 05C50
@article{PIM_1991_N_S_50_64_a6,
     author = {Miroslav Petrovi\'c},
     title = {Some {Results} on {Graphs} {With} at {Most} two {Positive} {Eigenvalues}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {39 },
     publisher = {mathdoc},
     volume = {_N_S_50},
     number = {64},
     year = {1991},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_1991_N_S_50_64_a6/}
}
TY  - JOUR
AU  - Miroslav Petrović
TI  - Some Results on Graphs With at Most two Positive Eigenvalues
JO  - Publications de l'Institut Mathématique
PY  - 1991
SP  - 39 
VL  - _N_S_50
IS  - 64
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_1991_N_S_50_64_a6/
LA  - en
ID  - PIM_1991_N_S_50_64_a6
ER  - 
%0 Journal Article
%A Miroslav Petrović
%T Some Results on Graphs With at Most two Positive Eigenvalues
%J Publications de l'Institut Mathématique
%D 1991
%P 39 
%V _N_S_50
%N 64
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_1991_N_S_50_64_a6/
%G en
%F PIM_1991_N_S_50_64_a6
Miroslav Petrović. Some Results on Graphs With at Most two Positive Eigenvalues. Publications de l'Institut Mathématique, _N_S_50 (1991) no. 64, p. 39 . http://geodesic.mathdoc.fr/item/PIM_1991_N_S_50_64_a6/