A Property of Canonical Graphs
Publications de l'Institut Mathématique, _N_S_50 (1991) no. 64, p. 33
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
A finite connected graph is called canonical if no two of
its vertices have the same neighbours. In this paper we prove that in
all but a sequence of exceptional cases, deleting of a suitable chosen
vertex in a canonical graph also gives a connected canonical graph.
This property can have applications in various hereditary problems in
the spectral Theory of Graphs.
Classification :
05C99
@article{PIM_1991_N_S_50_64_a5,
author = {Aleksandar Torga\v{s}ev},
title = {A {Property} of {Canonical} {Graphs}},
journal = {Publications de l'Institut Math\'ematique},
pages = {33 },
year = {1991},
volume = {_N_S_50},
number = {64},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_1991_N_S_50_64_a5/}
}
Aleksandar Torgašev. A Property of Canonical Graphs. Publications de l'Institut Mathématique, _N_S_50 (1991) no. 64, p. 33 . http://geodesic.mathdoc.fr/item/PIM_1991_N_S_50_64_a5/