A Property of Canonical Graphs
Publications de l'Institut Mathématique, _N_S_50 (1991) no. 64, p. 33 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

A finite connected graph is called canonical if no two of its vertices have the same neighbours. In this paper we prove that in all but a sequence of exceptional cases, deleting of a suitable chosen vertex in a canonical graph also gives a connected canonical graph. This property can have applications in various hereditary problems in the spectral Theory of Graphs.
Classification : 05C99
@article{PIM_1991_N_S_50_64_a5,
     author = {Aleksandar Torga\v{s}ev},
     title = {A {Property} of {Canonical} {Graphs}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {33 },
     publisher = {mathdoc},
     volume = {_N_S_50},
     number = {64},
     year = {1991},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_1991_N_S_50_64_a5/}
}
TY  - JOUR
AU  - Aleksandar Torgašev
TI  - A Property of Canonical Graphs
JO  - Publications de l'Institut Mathématique
PY  - 1991
SP  - 33 
VL  - _N_S_50
IS  - 64
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_1991_N_S_50_64_a5/
LA  - en
ID  - PIM_1991_N_S_50_64_a5
ER  - 
%0 Journal Article
%A Aleksandar Torgašev
%T A Property of Canonical Graphs
%J Publications de l'Institut Mathématique
%D 1991
%P 33 
%V _N_S_50
%N 64
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_1991_N_S_50_64_a5/
%G en
%F PIM_1991_N_S_50_64_a5
Aleksandar Torgašev. A Property of Canonical Graphs. Publications de l'Institut Mathématique, _N_S_50 (1991) no. 64, p. 33 . http://geodesic.mathdoc.fr/item/PIM_1991_N_S_50_64_a5/