A way of Reducing the Factorization Problem in Z[x] to the Factorization Problem in Z
Publications de l'Institut Mathématique, _N_S_50 (1991) no. 64, p. 159 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

Let $p(x)\in Z[x]$ be a given polynomial. Then there exists and can be effectively determined a natural number $M$ such that the factorization problem of $p(x)$ in $Z[x]$ is logically equivalent to the problem of finding some particular factorization of the number $p(M)$.
Classification : 60F05
@article{PIM_1991_N_S_50_64_a19,
     author = {Slavi\v{s}a B. Pre\v{s}i\'c},
     title = {A way of {Reducing} the {Factorization} {Problem} in {Z[x]} to the {Factorization} {Problem} in {Z}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {159 },
     publisher = {mathdoc},
     volume = {_N_S_50},
     number = {64},
     year = {1991},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_1991_N_S_50_64_a19/}
}
TY  - JOUR
AU  - Slaviša B. Prešić
TI  - A way of Reducing the Factorization Problem in Z[x] to the Factorization Problem in Z
JO  - Publications de l'Institut Mathématique
PY  - 1991
SP  - 159 
VL  - _N_S_50
IS  - 64
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_1991_N_S_50_64_a19/
LA  - en
ID  - PIM_1991_N_S_50_64_a19
ER  - 
%0 Journal Article
%A Slaviša B. Prešić
%T A way of Reducing the Factorization Problem in Z[x] to the Factorization Problem in Z
%J Publications de l'Institut Mathématique
%D 1991
%P 159 
%V _N_S_50
%N 64
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_1991_N_S_50_64_a19/
%G en
%F PIM_1991_N_S_50_64_a19
Slaviša B. Prešić. A way of Reducing the Factorization Problem in Z[x] to the Factorization Problem in Z. Publications de l'Institut Mathématique, _N_S_50 (1991) no. 64, p. 159 . http://geodesic.mathdoc.fr/item/PIM_1991_N_S_50_64_a19/