A way of Reducing the Factorization Problem in Z[x] to the Factorization Problem in Z
Publications de l'Institut Mathématique, _N_S_50 (1991) no. 64, p. 159
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
Let $p(x)\in Z[x]$ be a given polynomial. Then there exists
and can be effectively determined a natural number $M$ such that the
factorization problem of $p(x)$ in $Z[x]$ is logically equivalent to
the problem of finding some particular factorization of the number $p(M)$.
Classification :
60F05
@article{PIM_1991_N_S_50_64_a19,
author = {Slavi\v{s}a B. Pre\v{s}i\'c},
title = {A way of {Reducing} the {Factorization} {Problem} in {Z[x]} to the {Factorization} {Problem} in {Z}},
journal = {Publications de l'Institut Math\'ematique},
pages = {159 },
year = {1991},
volume = {_N_S_50},
number = {64},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_1991_N_S_50_64_a19/}
}
TY - JOUR AU - Slaviša B. Prešić TI - A way of Reducing the Factorization Problem in Z[x] to the Factorization Problem in Z JO - Publications de l'Institut Mathématique PY - 1991 SP - 159 VL - _N_S_50 IS - 64 UR - http://geodesic.mathdoc.fr/item/PIM_1991_N_S_50_64_a19/ LA - en ID - PIM_1991_N_S_50_64_a19 ER -
Slaviša B. Prešić. A way of Reducing the Factorization Problem in Z[x] to the Factorization Problem in Z. Publications de l'Institut Mathématique, _N_S_50 (1991) no. 64, p. 159 . http://geodesic.mathdoc.fr/item/PIM_1991_N_S_50_64_a19/