The Dual Steiner Formula for Convex Compacta
Publications de l'Institut Mathématique, _N_S_50 (1991) no. 64, p. 152
The classical Steiner formula deals with the volume of
$K+rD_n$, where $K$ is a convex compact set in $R^n$, $r\ge0$, and
$D_n$ the Euclidean disc in $R^n$. We compute the volume of
$(K+rD_n)^*$, where $K^*$ means the dual of $K$. We also represent some
Steiner functionals by integrals and prove some inequalities.
Classification :
52A20
@article{PIM_1991_N_S_50_64_a18,
author = {Ljuban Dedi\'c},
title = {The {Dual} {Steiner} {Formula} for {Convex} {Compacta}},
journal = {Publications de l'Institut Math\'ematique},
pages = {152 },
year = {1991},
volume = {_N_S_50},
number = {64},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_1991_N_S_50_64_a18/}
}
Ljuban Dedić. The Dual Steiner Formula for Convex Compacta. Publications de l'Institut Mathématique, _N_S_50 (1991) no. 64, p. 152 . http://geodesic.mathdoc.fr/item/PIM_1991_N_S_50_64_a18/