Trace Formula for Nuclear Perturbations of Discrete Nonselfadjoint Operators
Publications de l'Institut Mathématique, _N_S_50 (1991) no. 64, p. 135
It is shown that, if $T$ is a discrete nonselfadjoint
operator, and $P$ is nuclear, than, under some condition, $T+P$ is
discrete. A regularized trace formula is given. It is shown that this
result is applicable to differential operators given by regular
boundary conditions.
Classification :
47B10 47A55
@article{PIM_1991_N_S_50_64_a16,
author = {Darko Milinkovi\'c},
title = {Trace {Formula} for {Nuclear} {Perturbations} of {Discrete} {Nonselfadjoint} {Operators}},
journal = {Publications de l'Institut Math\'ematique},
pages = {135 },
year = {1991},
volume = {_N_S_50},
number = {64},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_1991_N_S_50_64_a16/}
}
TY - JOUR AU - Darko Milinković TI - Trace Formula for Nuclear Perturbations of Discrete Nonselfadjoint Operators JO - Publications de l'Institut Mathématique PY - 1991 SP - 135 VL - _N_S_50 IS - 64 UR - http://geodesic.mathdoc.fr/item/PIM_1991_N_S_50_64_a16/ LA - en ID - PIM_1991_N_S_50_64_a16 ER -
Darko Milinković. Trace Formula for Nuclear Perturbations of Discrete Nonselfadjoint Operators. Publications de l'Institut Mathématique, _N_S_50 (1991) no. 64, p. 135 . http://geodesic.mathdoc.fr/item/PIM_1991_N_S_50_64_a16/