On Isomorphisms of L1 Spaces of Analytic Functions Onto L1
Publications de l'Institut Mathématique, _N_S_50 (1991) no. 64, p. 131
It is proved that an $L^1_{\varphi}$ space of analytic
functions in the unit disc, with the weight $\varphi'(1-|z|)$, is
isomorphic to the Lebesgue sequence space $l^1$ only if $\varphi$ is
``normal''. The converse is known from the papers of Shields and
Williams [13] and Lindenstrauss and Pelczynski [4]. The key of our
proof are three classical results: Paley's theorem on lacunary series,
Pelczynski's theorem on complemented subspaces of $l^1$ and
Lindenstrauss-Pelczynski's theorem on the equivalence of unconditional
bases in $l^1$.
Classification :
46E15 46B20
@article{PIM_1991_N_S_50_64_a15,
author = {Miroslav Pavlovi\'c},
title = {On {Isomorphisms} of {L1} {Spaces} of {Analytic} {Functions} {Onto} {L1}},
journal = {Publications de l'Institut Math\'ematique},
pages = {131 },
year = {1991},
volume = {_N_S_50},
number = {64},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_1991_N_S_50_64_a15/}
}
Miroslav Pavlović. On Isomorphisms of L1 Spaces of Analytic Functions Onto L1. Publications de l'Institut Mathématique, _N_S_50 (1991) no. 64, p. 131 . http://geodesic.mathdoc.fr/item/PIM_1991_N_S_50_64_a15/