Radial N-th Derivatives of Bounded Analytic Operator Functions
Publications de l'Institut Mathématique, _N_S_50 (1991) no. 64, p. 111
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
We give, roughly, necessary and
sufficient conditions, in terms of the Potapov-Ginzburg factorization,
for the existence of $N$-th radial derivatives of bounded analytic
operator functions. Our result is a generalization of the result of
Ahern and Clark concerning scalar functions [1]. For inner matrix
functions (in the case $N$ odd) such a result was proved in [2].
Classification :
30G35 47B38
Keywords: analytic operator function, radial derivative, operator-valued kernel
Keywords: analytic operator function, radial derivative, operator-valued kernel
@article{PIM_1991_N_S_50_64_a13,
author = {Du\v{s}an Georgijevi\'c},
title = {Radial {N-th} {Derivatives} of {Bounded} {Analytic} {Operator} {Functions}},
journal = {Publications de l'Institut Math\'ematique},
pages = {111 },
publisher = {mathdoc},
volume = {_N_S_50},
number = {64},
year = {1991},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_1991_N_S_50_64_a13/}
}
TY - JOUR AU - Dušan Georgijević TI - Radial N-th Derivatives of Bounded Analytic Operator Functions JO - Publications de l'Institut Mathématique PY - 1991 SP - 111 VL - _N_S_50 IS - 64 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PIM_1991_N_S_50_64_a13/ LA - en ID - PIM_1991_N_S_50_64_a13 ER -
Dušan Georgijević. Radial N-th Derivatives of Bounded Analytic Operator Functions. Publications de l'Institut Mathématique, _N_S_50 (1991) no. 64, p. 111 . http://geodesic.mathdoc.fr/item/PIM_1991_N_S_50_64_a13/