Radial N-th Derivatives of Bounded Analytic Operator Functions
Publications de l'Institut Mathématique, _N_S_50 (1991) no. 64, p. 111 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

We give, roughly, necessary and sufficient conditions, in terms of the Potapov-Ginzburg factorization, for the existence of $N$-th radial derivatives of bounded analytic operator functions. Our result is a generalization of the result of Ahern and Clark concerning scalar functions [1]. For inner matrix functions (in the case $N$ odd) such a result was proved in [2].
Classification : 30G35 47B38
Keywords: analytic operator function, radial derivative, operator-valued kernel
@article{PIM_1991_N_S_50_64_a13,
     author = {Du\v{s}an Georgijevi\'c},
     title = {Radial {N-th} {Derivatives} of {Bounded} {Analytic} {Operator} {Functions}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {111 },
     publisher = {mathdoc},
     volume = {_N_S_50},
     number = {64},
     year = {1991},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_1991_N_S_50_64_a13/}
}
TY  - JOUR
AU  - Dušan Georgijević
TI  - Radial N-th Derivatives of Bounded Analytic Operator Functions
JO  - Publications de l'Institut Mathématique
PY  - 1991
SP  - 111 
VL  - _N_S_50
IS  - 64
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_1991_N_S_50_64_a13/
LA  - en
ID  - PIM_1991_N_S_50_64_a13
ER  - 
%0 Journal Article
%A Dušan Georgijević
%T Radial N-th Derivatives of Bounded Analytic Operator Functions
%J Publications de l'Institut Mathématique
%D 1991
%P 111 
%V _N_S_50
%N 64
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_1991_N_S_50_64_a13/
%G en
%F PIM_1991_N_S_50_64_a13
Dušan Georgijević. Radial N-th Derivatives of Bounded Analytic Operator Functions. Publications de l'Institut Mathématique, _N_S_50 (1991) no. 64, p. 111 . http://geodesic.mathdoc.fr/item/PIM_1991_N_S_50_64_a13/