Radial N-th Derivatives of Bounded Analytic Operator Functions
Publications de l'Institut Mathématique, _N_S_50 (1991) no. 64, p. 111
We give, roughly, necessary and
sufficient conditions, in terms of the Potapov-Ginzburg factorization,
for the existence of $N$-th radial derivatives of bounded analytic
operator functions. Our result is a generalization of the result of
Ahern and Clark concerning scalar functions [1]. For inner matrix
functions (in the case $N$ odd) such a result was proved in [2].
Classification :
30G35 47B38
Keywords: analytic operator function, radial derivative, operator-valued kernel
Keywords: analytic operator function, radial derivative, operator-valued kernel
@article{PIM_1991_N_S_50_64_a13,
author = {Du\v{s}an Georgijevi\'c},
title = {Radial {N-th} {Derivatives} of {Bounded} {Analytic} {Operator} {Functions}},
journal = {Publications de l'Institut Math\'ematique},
pages = {111 },
year = {1991},
volume = {_N_S_50},
number = {64},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_1991_N_S_50_64_a13/}
}
Dušan Georgijević. Radial N-th Derivatives of Bounded Analytic Operator Functions. Publications de l'Institut Mathématique, _N_S_50 (1991) no. 64, p. 111 . http://geodesic.mathdoc.fr/item/PIM_1991_N_S_50_64_a13/