Algebra of Antisymmetric Characteristics
Publications de l'Institut Mathématique, _N_S_47 (1990) no. 61, p. 39
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
As the basis for derivation of the $(P,l)$-symmetry groups
and reduction of the theory of multiple antisymmetry to the theory of
simple antisymmetry, a generalization of antisymmetric characteristic
$(AC)$ is used. A catalogue of non-isomorphic $AC$ formed by $1\le l\le4$
generators is given. The algebraic properties of $AC$ are discussed
and the direct product of $AC$ is defined.
Classification :
20H15
@article{PIM_1990_N_S_47_61_a5,
author = {Slavik Jablan},
title = {Algebra of {Antisymmetric} {Characteristics}},
journal = {Publications de l'Institut Math\'ematique},
pages = {39 },
year = {1990},
volume = {_N_S_47},
number = {61},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_1990_N_S_47_61_a5/}
}
Slavik Jablan. Algebra of Antisymmetric Characteristics. Publications de l'Institut Mathématique, _N_S_47 (1990) no. 61, p. 39 . http://geodesic.mathdoc.fr/item/PIM_1990_N_S_47_61_a5/