On the Distribution of Waiting Time Until K-th Repetition of any Event
Publications de l'Institut Mathématique, _N_S_47 (1990) no. 61, p. 151
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
The random placing of balls continues until we find that one
of boxes has been occupied $k$ times, $k\ge2$ (``birthday surprise'').
The case of unlimited number of alternatives with unequal probabilities
is discussed. Some exact and asymptotic formulas for the distribution
of waiting time are given.
Classification :
60C05 60J10
@article{PIM_1990_N_S_47_61_a21,
author = {Dragan Banjevi\'c},
title = {On the {Distribution} of {Waiting} {Time} {Until} {K-th} {Repetition} of any {Event}},
journal = {Publications de l'Institut Math\'ematique},
pages = {151 },
year = {1990},
volume = {_N_S_47},
number = {61},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_1990_N_S_47_61_a21/}
}
Dragan Banjević. On the Distribution of Waiting Time Until K-th Repetition of any Event. Publications de l'Institut Mathématique, _N_S_47 (1990) no. 61, p. 151 . http://geodesic.mathdoc.fr/item/PIM_1990_N_S_47_61_a21/