On the Distribution of Waiting Time Until K-th Repetition of any Event
Publications de l'Institut Mathématique, _N_S_47 (1990) no. 61, p. 151 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

The random placing of balls continues until we find that one of boxes has been occupied $k$ times, $k\ge2$ (``birthday surprise''). The case of unlimited number of alternatives with unequal probabilities is discussed. Some exact and asymptotic formulas for the distribution of waiting time are given.
Classification : 60C05 60J10
@article{PIM_1990_N_S_47_61_a21,
     author = {Dragan Banjevi\'c},
     title = {On the {Distribution} of {Waiting} {Time} {Until} {K-th} {Repetition} of any {Event}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {151 },
     publisher = {mathdoc},
     volume = {_N_S_47},
     number = {61},
     year = {1990},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_1990_N_S_47_61_a21/}
}
TY  - JOUR
AU  - Dragan Banjević
TI  - On the Distribution of Waiting Time Until K-th Repetition of any Event
JO  - Publications de l'Institut Mathématique
PY  - 1990
SP  - 151 
VL  - _N_S_47
IS  - 61
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_1990_N_S_47_61_a21/
LA  - en
ID  - PIM_1990_N_S_47_61_a21
ER  - 
%0 Journal Article
%A Dragan Banjević
%T On the Distribution of Waiting Time Until K-th Repetition of any Event
%J Publications de l'Institut Mathématique
%D 1990
%P 151 
%V _N_S_47
%N 61
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_1990_N_S_47_61_a21/
%G en
%F PIM_1990_N_S_47_61_a21
Dragan Banjević. On the Distribution of Waiting Time Until K-th Repetition of any Event. Publications de l'Institut Mathématique, _N_S_47 (1990) no. 61, p. 151 . http://geodesic.mathdoc.fr/item/PIM_1990_N_S_47_61_a21/