On the Distribution of Waiting Time Until K-th Repetition of any Event
Publications de l'Institut Mathématique, _N_S_47 (1990) no. 61, p. 151
The random placing of balls continues until we find that one
of boxes has been occupied $k$ times, $k\ge2$ (``birthday surprise'').
The case of unlimited number of alternatives with unequal probabilities
is discussed. Some exact and asymptotic formulas for the distribution
of waiting time are given.
Classification :
60C05 60J10
@article{PIM_1990_N_S_47_61_a21,
author = {Dragan Banjevi\'c},
title = {On the {Distribution} of {Waiting} {Time} {Until} {K-th} {Repetition} of any {Event}},
journal = {Publications de l'Institut Math\'ematique},
pages = {151 },
year = {1990},
volume = {_N_S_47},
number = {61},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_1990_N_S_47_61_a21/}
}
Dragan Banjević. On the Distribution of Waiting Time Until K-th Repetition of any Event. Publications de l'Institut Mathématique, _N_S_47 (1990) no. 61, p. 151 . http://geodesic.mathdoc.fr/item/PIM_1990_N_S_47_61_a21/