Concerning Splittability and Perfect Mappings
Publications de l'Institut Mathématique, _N_S_47 (1990) no. 61, p. 127
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
We consider the following question: let a space $X$ admits a
perfect mapping onto a space $Y$ from some class $\Cal P$ of topological
spaces and let $X$ be splittable over $\Cal P$. Does $X$ belong to
$\Cal P$?
Classification :
54C10 54D30 54D55 54E18 54E30
@article{PIM_1990_N_S_47_61_a17,
author = {A. V. Arhangel and skii and Ljubi\v{s}a Ko\v{c}inac},
title = {Concerning {Splittability} and {Perfect} {Mappings}},
journal = {Publications de l'Institut Math\'ematique},
pages = {127 },
publisher = {mathdoc},
volume = {_N_S_47},
number = {61},
year = {1990},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_1990_N_S_47_61_a17/}
}
TY - JOUR AU - A. V. Arhangel AU - skii AU - Ljubiša Kočinac TI - Concerning Splittability and Perfect Mappings JO - Publications de l'Institut Mathématique PY - 1990 SP - 127 VL - _N_S_47 IS - 61 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PIM_1990_N_S_47_61_a17/ LA - en ID - PIM_1990_N_S_47_61_a17 ER -
A. V. Arhangel; skii; Ljubiša Kočinac. Concerning Splittability and Perfect Mappings. Publications de l'Institut Mathématique, _N_S_47 (1990) no. 61, p. 127 . http://geodesic.mathdoc.fr/item/PIM_1990_N_S_47_61_a17/