Concerning Splittability and Perfect Mappings
Publications de l'Institut Mathématique, _N_S_47 (1990) no. 61, p. 127
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
We consider the following question: let a space $X$ admits a
perfect mapping onto a space $Y$ from some class $\Cal P$ of topological
spaces and let $X$ be splittable over $\Cal P$. Does $X$ belong to
$\Cal P$?
Classification :
54C10 54D30 54D55 54E18 54E30
@article{PIM_1990_N_S_47_61_a17,
author = {A. V. Arhangel and skii and Ljubi\v{s}a Ko\v{c}inac},
title = {Concerning {Splittability} and {Perfect} {Mappings}},
journal = {Publications de l'Institut Math\'ematique},
pages = {127 },
year = {1990},
volume = {_N_S_47},
number = {61},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_1990_N_S_47_61_a17/}
}
A. V. Arhangel; skii; Ljubiša Kočinac. Concerning Splittability and Perfect Mappings. Publications de l'Institut Mathématique, _N_S_47 (1990) no. 61, p. 127 . http://geodesic.mathdoc.fr/item/PIM_1990_N_S_47_61_a17/