A Remark on a Certain Class of Arithmetic Functions
Publications de l'Institut Mathématique, _N_S_46 (1989) no. 60, p. 55
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
Let $a(n)$ be an arithmetic function such that
$
\sum_{n=1}^{\infty}a(n)/n^s=f(s)łog g(s)+h(s),
$
where $f(s)$ is analytic for Re $(s)>1/2$ and bounded for
Re $(s)\ge 1/2+\varepsilon$, $g(s)$ is a zeta-like function, $h(s)$ is
analytic and bounded for Re $(s)\ge 1/2+\varepsilon$. Then
$
\sum_{nłe x}a(n)=xłeft[b_1/łog x+\cdots+b_m/łog^mx+O(1/łog^{m+1}x)\right]
$
with arbitrary fixed $m\ge 1$, $b_1=f(1)$ and computable constants
$b_2,\cdots,b_m$.
Classification :
11N64 11A25
@article{PIM_1989_N_S_46_60_a8,
author = {Piotr Zarzycki},
title = {A {Remark} on a {Certain} {Class} of {Arithmetic} {Functions}},
journal = {Publications de l'Institut Math\'ematique},
pages = {55 },
year = {1989},
volume = {_N_S_46},
number = {60},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_1989_N_S_46_60_a8/}
}
Piotr Zarzycki. A Remark on a Certain Class of Arithmetic Functions. Publications de l'Institut Mathématique, _N_S_46 (1989) no. 60, p. 55 . http://geodesic.mathdoc.fr/item/PIM_1989_N_S_46_60_a8/