On Some Integrals Involving the Mean Square Formula for the Riemann Zeta-function
Publications de l'Institut Mathématique, _N_S_46 (1989) no. 60, p. 33
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
Let $E(T)$ denote the error term in the mean square formula
for the Riemann zeta-function $\zeta(s)$. Several mean value results
involving $E(T)$ and $\zeta(1/2+iT)$ are obtained which elucidate the
behaviour of these functions.
Classification :
10H25
@article{PIM_1989_N_S_46_60_a5,
author = {Aleksandar Ivi\'c},
title = {On {Some} {Integrals} {Involving} the {Mean} {Square} {Formula} for the {Riemann} {Zeta-function}},
journal = {Publications de l'Institut Math\'ematique},
pages = {33 },
publisher = {mathdoc},
volume = {_N_S_46},
number = {60},
year = {1989},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_1989_N_S_46_60_a5/}
}
TY - JOUR AU - Aleksandar Ivić TI - On Some Integrals Involving the Mean Square Formula for the Riemann Zeta-function JO - Publications de l'Institut Mathématique PY - 1989 SP - 33 VL - _N_S_46 IS - 60 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PIM_1989_N_S_46_60_a5/ LA - en ID - PIM_1989_N_S_46_60_a5 ER -
Aleksandar Ivić. On Some Integrals Involving the Mean Square Formula for the Riemann Zeta-function. Publications de l'Institut Mathématique, _N_S_46 (1989) no. 60, p. 33 . http://geodesic.mathdoc.fr/item/PIM_1989_N_S_46_60_a5/