On Sums Involving Reciprocals of Certain Large Additive Functions (ii)
Publications de l'Institut Mathématique, _N_S_46 (1989) no. 60, p. 25
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
Let $\beta(n)=\sum_{p\mid n}p$ and
$B(n)=\sum_{p^{\alpha}\parallel n}\alpha p$. Let $p(n)$ denote the
largest prime factor of an integer $n\ge2$. In the present paper we
sharpen the asymptotic formula for the sum $\sum\limits_{2\le n\le x}
B(n)/\beta(n)$ and we derive an asymptotic formula for the sum
$\sum\limits_{2\le n\le x}(B(n)-\beta(n))/p(n)$.
Classification :
10H15 10H25
@article{PIM_1989_N_S_46_60_a4,
author = {Tizuo Xuan},
title = {On {Sums} {Involving} {Reciprocals} of {Certain} {Large} {Additive} {Functions} (ii)},
journal = {Publications de l'Institut Math\'ematique},
pages = {25 },
publisher = {mathdoc},
volume = {_N_S_46},
number = {60},
year = {1989},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_1989_N_S_46_60_a4/}
}
Tizuo Xuan. On Sums Involving Reciprocals of Certain Large Additive Functions (ii). Publications de l'Institut Mathématique, _N_S_46 (1989) no. 60, p. 25 . http://geodesic.mathdoc.fr/item/PIM_1989_N_S_46_60_a4/