On the Quotient (omega,m)-ringoids
Publications de l'Institut Mathématique, _N_S_46 (1989) no. 60, p. 20 Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

Voir la notice de l'article

Universal algebras considered in this paper are generalizations of rings, distributive lattices, semirings and composite rings. We consider the quotient ring construction of $(\Omega,m)$-ringoid and extend a result of Crombez and Timm about $(n,m)$-rings.
Classification : 08A05
Keywords: ringoid, $m$-semigroups, congruence, integral domain, simple, lattices and composite ring.
@article{PIM_1989_N_S_46_60_a3,
     author = {Sin-Min Lee},
     title = {On the {Quotient} (omega,m)-ringoids},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {20 },
     year = {1989},
     volume = {_N_S_46},
     number = {60},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_1989_N_S_46_60_a3/}
}
TY  - JOUR
AU  - Sin-Min Lee
TI  - On the Quotient (omega,m)-ringoids
JO  - Publications de l'Institut Mathématique
PY  - 1989
SP  - 20 
VL  - _N_S_46
IS  - 60
UR  - http://geodesic.mathdoc.fr/item/PIM_1989_N_S_46_60_a3/
LA  - en
ID  - PIM_1989_N_S_46_60_a3
ER  - 
%0 Journal Article
%A Sin-Min Lee
%T On the Quotient (omega,m)-ringoids
%J Publications de l'Institut Mathématique
%D 1989
%P 20 
%V _N_S_46
%N 60
%U http://geodesic.mathdoc.fr/item/PIM_1989_N_S_46_60_a3/
%G en
%F PIM_1989_N_S_46_60_a3
Sin-Min Lee. On the Quotient (omega,m)-ringoids. Publications de l'Institut Mathématique, _N_S_46 (1989) no. 60, p. 20 . http://geodesic.mathdoc.fr/item/PIM_1989_N_S_46_60_a3/