On the Quotient (omega,m)-ringoids
Publications de l'Institut Mathématique, _N_S_46 (1989) no. 60, p. 20
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
Universal algebras considered in this paper are
generalizations of rings, distributive lattices, semirings and
composite rings. We consider the quotient ring construction of
$(\Omega,m)$-ringoid and extend a result of Crombez and Timm about
$(n,m)$-rings.
Classification :
08A05
Keywords: ringoid, $m$-semigroups, congruence, integral domain, simple, lattices and composite ring.
Keywords: ringoid, $m$-semigroups, congruence, integral domain, simple, lattices and composite ring.
@article{PIM_1989_N_S_46_60_a3,
author = {Sin-Min Lee},
title = {On the {Quotient} (omega,m)-ringoids},
journal = {Publications de l'Institut Math\'ematique},
pages = {20 },
publisher = {mathdoc},
volume = {_N_S_46},
number = {60},
year = {1989},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_1989_N_S_46_60_a3/}
}
Sin-Min Lee. On the Quotient (omega,m)-ringoids. Publications de l'Institut Mathématique, _N_S_46 (1989) no. 60, p. 20 . http://geodesic.mathdoc.fr/item/PIM_1989_N_S_46_60_a3/