On Riemannian 4-symmetric Manifolds
Publications de l'Institut Mathématique, _N_S_46 (1989) no. 60, p. 163 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

If $M$ is a Riemannian 4-symmetric manifold, then it is known that $M$ has three complex differentiable distributions $D_{-1}$, $D_1$ and $\overline D_1$ on it. We shall prove that there are three differentiable complementry projection operators $P$, $P_1$ and $\overline P_1$ on $M$ that project on $D_{-1}$, $D_1$ and $\overline D_1$ respectively. Some useful relations containing Nijenhuis tensor are found. Necessary and sufficient conditions for $D_{-1}$, $D_1$, and $\overline D_1$ to be integrable are studied.
Classification : 53C15
@article{PIM_1989_N_S_46_60_a21,
     author = {Adnan Al-Aqeel},
     title = {On {Riemannian} 4-symmetric {Manifolds}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {163 },
     publisher = {mathdoc},
     volume = {_N_S_46},
     number = {60},
     year = {1989},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_1989_N_S_46_60_a21/}
}
TY  - JOUR
AU  - Adnan Al-Aqeel
TI  - On Riemannian 4-symmetric Manifolds
JO  - Publications de l'Institut Mathématique
PY  - 1989
SP  - 163 
VL  - _N_S_46
IS  - 60
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_1989_N_S_46_60_a21/
LA  - en
ID  - PIM_1989_N_S_46_60_a21
ER  - 
%0 Journal Article
%A Adnan Al-Aqeel
%T On Riemannian 4-symmetric Manifolds
%J Publications de l'Institut Mathématique
%D 1989
%P 163 
%V _N_S_46
%N 60
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_1989_N_S_46_60_a21/
%G en
%F PIM_1989_N_S_46_60_a21
Adnan Al-Aqeel. On Riemannian 4-symmetric Manifolds. Publications de l'Institut Mathématique, _N_S_46 (1989) no. 60, p. 163 . http://geodesic.mathdoc.fr/item/PIM_1989_N_S_46_60_a21/