On Riemannian 4-symmetric Manifolds
Publications de l'Institut Mathématique, _N_S_46 (1989) no. 60, p. 163
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
If $M$ is a Riemannian 4-symmetric manifold, then it is
known that $M$ has three complex differentiable distributions $D_{-1}$,
$D_1$ and $\overline D_1$ on it. We shall prove that there are three
differentiable complementry projection operators $P$, $P_1$ and
$\overline P_1$ on $M$ that project on $D_{-1}$, $D_1$ and
$\overline D_1$ respectively. Some useful relations containing
Nijenhuis tensor are found. Necessary and sufficient conditions for
$D_{-1}$, $D_1$, and $\overline D_1$ to be integrable are studied.
Classification :
53C15
@article{PIM_1989_N_S_46_60_a21,
author = {Adnan Al-Aqeel},
title = {On {Riemannian} 4-symmetric {Manifolds}},
journal = {Publications de l'Institut Math\'ematique},
pages = {163 },
year = {1989},
volume = {_N_S_46},
number = {60},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_1989_N_S_46_60_a21/}
}
Adnan Al-Aqeel. On Riemannian 4-symmetric Manifolds. Publications de l'Institut Mathématique, _N_S_46 (1989) no. 60, p. 163 . http://geodesic.mathdoc.fr/item/PIM_1989_N_S_46_60_a21/