A Characterization of Formally Symmetric Unbounded Operators
Publications de l'Institut Mathématique, _N_S_46 (1989) no. 60, p. 141
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
We give necessary and sufficient conditions for an operator
in a Hilbert space to be formally symmetric, symmetric or self-adjoint.
This generalizes the well-known fact that a bounded operator $T$ is
self-adjoint if and only if $T^\ast T\le(\operatorname{Re}T)^2$. The
proof is based on a well-behaved extension of the corresponding
symmetric operator.
Classification :
47B25
@article{PIM_1989_N_S_46_60_a19,
author = {Danko Joci\'c},
title = {A {Characterization} of {Formally} {Symmetric} {Unbounded} {Operators}},
journal = {Publications de l'Institut Math\'ematique},
pages = {141 },
year = {1989},
volume = {_N_S_46},
number = {60},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_1989_N_S_46_60_a19/}
}
Danko Jocić. A Characterization of Formally Symmetric Unbounded Operators. Publications de l'Institut Mathématique, _N_S_46 (1989) no. 60, p. 141 . http://geodesic.mathdoc.fr/item/PIM_1989_N_S_46_60_a19/