Deterministic and Random Volterra Integral Inclusions
Publications de l'Institut Mathématique, _N_S_46 (1989) no. 60, p. 119 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

We establish the existence of solutions for a nonlinear Volterra integral inclusion, involving a nonconvex valued orientor field and defined in a separable Banach space. Next we consider a random version of it and prove the existence of random solutions. Finally we examine a perturbed version of the original inclusion, with the pertubation being multivalued. Our results extend earlier ones by Chuong, Ragimkhanov, Lyapin, Milton-Tsokos, Papageorgiou amd Tsokos.
Classification : 45G05 60H20
Keywords: Lower semicontinuous and upper semicontinuous multifunctions, Aumann's selection theorem, measure of noncompactness, integrable selectors, Arzela-Ascoli theorem
@article{PIM_1989_N_S_46_60_a17,
     author = {Nikolaos S. Papageorgiou},
     title = {Deterministic and {Random} {Volterra} {Integral} {Inclusions}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {119 },
     publisher = {mathdoc},
     volume = {_N_S_46},
     number = {60},
     year = {1989},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_1989_N_S_46_60_a17/}
}
TY  - JOUR
AU  - Nikolaos S. Papageorgiou
TI  - Deterministic and Random Volterra Integral Inclusions
JO  - Publications de l'Institut Mathématique
PY  - 1989
SP  - 119 
VL  - _N_S_46
IS  - 60
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_1989_N_S_46_60_a17/
LA  - en
ID  - PIM_1989_N_S_46_60_a17
ER  - 
%0 Journal Article
%A Nikolaos S. Papageorgiou
%T Deterministic and Random Volterra Integral Inclusions
%J Publications de l'Institut Mathématique
%D 1989
%P 119 
%V _N_S_46
%N 60
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_1989_N_S_46_60_a17/
%G en
%F PIM_1989_N_S_46_60_a17
Nikolaos S. Papageorgiou. Deterministic and Random Volterra Integral Inclusions. Publications de l'Institut Mathématique, _N_S_46 (1989) no. 60, p. 119 . http://geodesic.mathdoc.fr/item/PIM_1989_N_S_46_60_a17/