Deterministic and Random Volterra Integral Inclusions
Publications de l'Institut Mathématique, _N_S_46 (1989) no. 60, p. 119
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
We establish the existence of solutions for a nonlinear
Volterra integral inclusion, involving a nonconvex valued orientor
field and defined in a separable Banach space. Next we consider a
random version of it and prove the existence of random solutions.
Finally we examine a perturbed version of the original inclusion, with
the pertubation being multivalued. Our results extend earlier ones by
Chuong, Ragimkhanov, Lyapin, Milton-Tsokos, Papageorgiou amd Tsokos.
Classification :
45G05 60H20
Keywords: Lower semicontinuous and upper semicontinuous multifunctions, Aumann's selection theorem, measure of noncompactness, integrable selectors, Arzela-Ascoli theorem
Keywords: Lower semicontinuous and upper semicontinuous multifunctions, Aumann's selection theorem, measure of noncompactness, integrable selectors, Arzela-Ascoli theorem
@article{PIM_1989_N_S_46_60_a17,
author = {Nikolaos S. Papageorgiou},
title = {Deterministic and {Random} {Volterra} {Integral} {Inclusions}},
journal = {Publications de l'Institut Math\'ematique},
pages = {119 },
publisher = {mathdoc},
volume = {_N_S_46},
number = {60},
year = {1989},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_1989_N_S_46_60_a17/}
}
Nikolaos S. Papageorgiou. Deterministic and Random Volterra Integral Inclusions. Publications de l'Institut Mathématique, _N_S_46 (1989) no. 60, p. 119 . http://geodesic.mathdoc.fr/item/PIM_1989_N_S_46_60_a17/