Deterministic and Random Volterra Integral Inclusions
Publications de l'Institut Mathématique, _N_S_46 (1989) no. 60, p. 119
We establish the existence of solutions for a nonlinear
Volterra integral inclusion, involving a nonconvex valued orientor
field and defined in a separable Banach space. Next we consider a
random version of it and prove the existence of random solutions.
Finally we examine a perturbed version of the original inclusion, with
the pertubation being multivalued. Our results extend earlier ones by
Chuong, Ragimkhanov, Lyapin, Milton-Tsokos, Papageorgiou amd Tsokos.
Classification :
45G05 60H20
Keywords: Lower semicontinuous and upper semicontinuous multifunctions, Aumann's selection theorem, measure of noncompactness, integrable selectors, Arzela-Ascoli theorem
Keywords: Lower semicontinuous and upper semicontinuous multifunctions, Aumann's selection theorem, measure of noncompactness, integrable selectors, Arzela-Ascoli theorem
@article{PIM_1989_N_S_46_60_a17,
author = {Nikolaos S. Papageorgiou},
title = {Deterministic and {Random} {Volterra} {Integral} {Inclusions}},
journal = {Publications de l'Institut Math\'ematique},
pages = {119 },
year = {1989},
volume = {_N_S_46},
number = {60},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_1989_N_S_46_60_a17/}
}
Nikolaos S. Papageorgiou. Deterministic and Random Volterra Integral Inclusions. Publications de l'Institut Mathématique, _N_S_46 (1989) no. 60, p. 119 . http://geodesic.mathdoc.fr/item/PIM_1989_N_S_46_60_a17/