Deterministic and Random Volterra Integral Inclusions
Publications de l'Institut Mathématique, _N_S_46 (1989) no. 60, p. 119

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

We establish the existence of solutions for a nonlinear Volterra integral inclusion, involving a nonconvex valued orientor field and defined in a separable Banach space. Next we consider a random version of it and prove the existence of random solutions. Finally we examine a perturbed version of the original inclusion, with the pertubation being multivalued. Our results extend earlier ones by Chuong, Ragimkhanov, Lyapin, Milton-Tsokos, Papageorgiou amd Tsokos.
Classification : 45G05 60H20
Keywords: Lower semicontinuous and upper semicontinuous multifunctions, Aumann's selection theorem, measure of noncompactness, integrable selectors, Arzela-Ascoli theorem
@article{PIM_1989_N_S_46_60_a17,
     author = {Nikolaos S. Papageorgiou},
     title = {Deterministic and {Random} {Volterra} {Integral} {Inclusions}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {119 },
     publisher = {mathdoc},
     volume = {_N_S_46},
     number = {60},
     year = {1989},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_1989_N_S_46_60_a17/}
}
TY  - JOUR
AU  - Nikolaos S. Papageorgiou
TI  - Deterministic and Random Volterra Integral Inclusions
JO  - Publications de l'Institut Mathématique
PY  - 1989
SP  - 119 
VL  - _N_S_46
IS  - 60
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_1989_N_S_46_60_a17/
LA  - en
ID  - PIM_1989_N_S_46_60_a17
ER  - 
%0 Journal Article
%A Nikolaos S. Papageorgiou
%T Deterministic and Random Volterra Integral Inclusions
%J Publications de l'Institut Mathématique
%D 1989
%P 119 
%V _N_S_46
%N 60
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_1989_N_S_46_60_a17/
%G en
%F PIM_1989_N_S_46_60_a17
Nikolaos S. Papageorgiou. Deterministic and Random Volterra Integral Inclusions. Publications de l'Institut Mathématique, _N_S_46 (1989) no. 60, p. 119 . http://geodesic.mathdoc.fr/item/PIM_1989_N_S_46_60_a17/