On P-valent Analytic Functions With Reference to Bernardi and Ruscheweyh Integral Operators
Publications de l'Institut Mathématique, _N_S_46 (1989) no. 60, p. 86 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

Let $T_n(h)$ be the class of analytic functions in the unit disk $E$ of the form $f(z)=a_pz^p+\sum_{n=p+1}^{\infty} a_nz^n$, $p\ge 1$, which satisfy the condition, $\dfrac{(n+1)}{(n+p)}\dfrac{D^{n+1}f(z)}{D^nf(z)}\prec h(z)$, $z\in E$, where $h$ is a convex univalent function in $E$ with $h(0)=1$. Then it is proved that $f$ is preserved under the Bernardi integral operator under certain conditions. It is also shown that if $f\in T_0(h)$, it is preserved under the Ruscheweyh integral operator under certain conditions.
Classification : 30C45
@article{PIM_1989_N_S_46_60_a12,
     author = {K. S. Padmanabhan and M. Jayamala},
     title = {On {P-valent} {Analytic} {Functions} {With} {Reference} to {Bernardi} and {Ruscheweyh} {Integral} {Operators}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {86 },
     publisher = {mathdoc},
     volume = {_N_S_46},
     number = {60},
     year = {1989},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_1989_N_S_46_60_a12/}
}
TY  - JOUR
AU  - K. S. Padmanabhan
AU  - M. Jayamala
TI  - On P-valent Analytic Functions With Reference to Bernardi and Ruscheweyh Integral Operators
JO  - Publications de l'Institut Mathématique
PY  - 1989
SP  - 86 
VL  - _N_S_46
IS  - 60
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_1989_N_S_46_60_a12/
LA  - en
ID  - PIM_1989_N_S_46_60_a12
ER  - 
%0 Journal Article
%A K. S. Padmanabhan
%A M. Jayamala
%T On P-valent Analytic Functions With Reference to Bernardi and Ruscheweyh Integral Operators
%J Publications de l'Institut Mathématique
%D 1989
%P 86 
%V _N_S_46
%N 60
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_1989_N_S_46_60_a12/
%G en
%F PIM_1989_N_S_46_60_a12
K. S. Padmanabhan; M. Jayamala. On P-valent Analytic Functions With Reference to Bernardi and Ruscheweyh Integral Operators. Publications de l'Institut Mathématique, _N_S_46 (1989) no. 60, p. 86 . http://geodesic.mathdoc.fr/item/PIM_1989_N_S_46_60_a12/