On P-valent Analytic Functions With Reference to Bernardi and Ruscheweyh Integral Operators
Publications de l'Institut Mathématique, _N_S_46 (1989) no. 60, p. 86
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
Let $T_n(h)$ be the class of analytic functions in the unit
disk $E$ of the form $f(z)=a_pz^p+\sum_{n=p+1}^{\infty} a_nz^n$, $p\ge 1$,
which satisfy the condition,
$\dfrac{(n+1)}{(n+p)}\dfrac{D^{n+1}f(z)}{D^nf(z)}\prec h(z)$, $z\in E$,
where $h$ is a convex univalent function in $E$ with $h(0)=1$. Then it
is proved that $f$ is preserved under the Bernardi integral operator
under certain conditions. It is also shown that if $f\in T_0(h)$, it is
preserved under the Ruscheweyh integral operator under certain
conditions.
Classification :
30C45
@article{PIM_1989_N_S_46_60_a12,
author = {K. S. Padmanabhan and M. Jayamala},
title = {On {P-valent} {Analytic} {Functions} {With} {Reference} to {Bernardi} and {Ruscheweyh} {Integral} {Operators}},
journal = {Publications de l'Institut Math\'ematique},
pages = {86 },
publisher = {mathdoc},
volume = {_N_S_46},
number = {60},
year = {1989},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_1989_N_S_46_60_a12/}
}
TY - JOUR AU - K. S. Padmanabhan AU - M. Jayamala TI - On P-valent Analytic Functions With Reference to Bernardi and Ruscheweyh Integral Operators JO - Publications de l'Institut Mathématique PY - 1989 SP - 86 VL - _N_S_46 IS - 60 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PIM_1989_N_S_46_60_a12/ LA - en ID - PIM_1989_N_S_46_60_a12 ER -
%0 Journal Article %A K. S. Padmanabhan %A M. Jayamala %T On P-valent Analytic Functions With Reference to Bernardi and Ruscheweyh Integral Operators %J Publications de l'Institut Mathématique %D 1989 %P 86 %V _N_S_46 %N 60 %I mathdoc %U http://geodesic.mathdoc.fr/item/PIM_1989_N_S_46_60_a12/ %G en %F PIM_1989_N_S_46_60_a12
K. S. Padmanabhan; M. Jayamala. On P-valent Analytic Functions With Reference to Bernardi and Ruscheweyh Integral Operators. Publications de l'Institut Mathématique, _N_S_46 (1989) no. 60, p. 86 . http://geodesic.mathdoc.fr/item/PIM_1989_N_S_46_60_a12/