On the Logarithmic Derivative of Some Bazilevic Functions
Publications de l'Institut Mathématique, _N_S_46 (1989) no. 60, p. 71 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

For $\a>0$, $0\le\b1$, let $B_0(\alpha,\beta)$ be the class of normalised analytic functions $f$ defined in the open unit disc $D$ such that $ \operatorname{Re}e^{i\psi}(f'(z)(f(z)/z)^{\alpha-1}-\beta)>0 $ for $z\in D$ and for some $\psi=\psi(f)\in R$. Upper and lower bounds for the logarithmic derivative $zf'/f$ for $f\in B_0(\alpha,\beta)$ are obtained.
Classification : 30C45
@article{PIM_1989_N_S_46_60_a10,
     author = {S. Abdul Halim and R. R. London and D. K. Thomas},
     title = {On the {Logarithmic} {Derivative} of {Some} {Bazilevic} {Functions}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {71 },
     publisher = {mathdoc},
     volume = {_N_S_46},
     number = {60},
     year = {1989},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_1989_N_S_46_60_a10/}
}
TY  - JOUR
AU  - S. Abdul Halim
AU  - R. R. London
AU  - D. K. Thomas
TI  - On the Logarithmic Derivative of Some Bazilevic Functions
JO  - Publications de l'Institut Mathématique
PY  - 1989
SP  - 71 
VL  - _N_S_46
IS  - 60
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_1989_N_S_46_60_a10/
LA  - en
ID  - PIM_1989_N_S_46_60_a10
ER  - 
%0 Journal Article
%A S. Abdul Halim
%A R. R. London
%A D. K. Thomas
%T On the Logarithmic Derivative of Some Bazilevic Functions
%J Publications de l'Institut Mathématique
%D 1989
%P 71 
%V _N_S_46
%N 60
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_1989_N_S_46_60_a10/
%G en
%F PIM_1989_N_S_46_60_a10
S. Abdul Halim; R. R. London; D. K. Thomas. On the Logarithmic Derivative of Some Bazilevic Functions. Publications de l'Institut Mathématique, _N_S_46 (1989) no. 60, p. 71 . http://geodesic.mathdoc.fr/item/PIM_1989_N_S_46_60_a10/