On the Logarithmic Derivative of Some Bazilevic Functions
Publications de l'Institut Mathématique, _N_S_46 (1989) no. 60, p. 71
For $\a>0$, $0\le\b1$, let $B_0(\alpha,\beta)$ be the class of
normalised analytic functions $f$ defined in the open unit disc $D$ such that
$
\operatorname{Re}e^{i\psi}(f'(z)(f(z)/z)^{\alpha-1}-\beta)>0
$
for $z\in D$ and for some $\psi=\psi(f)\in R$. Upper and lower bounds for the
logarithmic derivative $zf'/f$ for $f\in B_0(\alpha,\beta)$ are obtained.
Classification :
30C45
@article{PIM_1989_N_S_46_60_a10,
author = {S. Abdul Halim and R. R. London and D. K. Thomas},
title = {On the {Logarithmic} {Derivative} of {Some} {Bazilevic} {Functions}},
journal = {Publications de l'Institut Math\'ematique},
pages = {71 },
year = {1989},
volume = {_N_S_46},
number = {60},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_1989_N_S_46_60_a10/}
}
TY - JOUR AU - S. Abdul Halim AU - R. R. London AU - D. K. Thomas TI - On the Logarithmic Derivative of Some Bazilevic Functions JO - Publications de l'Institut Mathématique PY - 1989 SP - 71 VL - _N_S_46 IS - 60 UR - http://geodesic.mathdoc.fr/item/PIM_1989_N_S_46_60_a10/ LA - en ID - PIM_1989_N_S_46_60_a10 ER -
S. Abdul Halim; R. R. London; D. K. Thomas. On the Logarithmic Derivative of Some Bazilevic Functions. Publications de l'Institut Mathématique, _N_S_46 (1989) no. 60, p. 71 . http://geodesic.mathdoc.fr/item/PIM_1989_N_S_46_60_a10/