On Weak Convergence to the Fixed Point of a Generalized Asymptotically Nonexpansive map
Publications de l'Institut Mathématique, _N_S_45 (1989) no. 59, p. 179

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

Opial's type of convergence theorem [3] is extended to the case of a generalized asymptotically nonexpansive map in uniformly convex Banach space having a weak duality mapping. Bose's result would follow as a corollary to Theorem 3.1 of present work.
Classification : 54H25 47H10 54C60
@article{PIM_1989_N_S_45_59_a24,
     author = {R. N. Mukherjee and Tanmoy Som and Vandana Verma},
     title = {On {Weak} {Convergence} to the {Fixed} {Point} of a {Generalized} {Asymptotically} {Nonexpansive} map},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {179 },
     publisher = {mathdoc},
     volume = {_N_S_45},
     number = {59},
     year = {1989},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_1989_N_S_45_59_a24/}
}
TY  - JOUR
AU  - R. N. Mukherjee
AU  - Tanmoy Som
AU  - Vandana Verma
TI  - On Weak Convergence to the Fixed Point of a Generalized Asymptotically Nonexpansive map
JO  - Publications de l'Institut Mathématique
PY  - 1989
SP  - 179 
VL  - _N_S_45
IS  - 59
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_1989_N_S_45_59_a24/
LA  - en
ID  - PIM_1989_N_S_45_59_a24
ER  - 
%0 Journal Article
%A R. N. Mukherjee
%A Tanmoy Som
%A Vandana Verma
%T On Weak Convergence to the Fixed Point of a Generalized Asymptotically Nonexpansive map
%J Publications de l'Institut Mathématique
%D 1989
%P 179 
%V _N_S_45
%N 59
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_1989_N_S_45_59_a24/
%G en
%F PIM_1989_N_S_45_59_a24
R. N. Mukherjee; Tanmoy Som; Vandana Verma. On Weak Convergence to the Fixed Point of a Generalized Asymptotically Nonexpansive map. Publications de l'Institut Mathématique, _N_S_45 (1989) no. 59, p. 179 . http://geodesic.mathdoc.fr/item/PIM_1989_N_S_45_59_a24/