On Weak Convergence to the Fixed Point of a Generalized Asymptotically Nonexpansive map
Publications de l'Institut Mathématique, _N_S_45 (1989) no. 59, p. 179
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
Opial's type of convergence theorem [3] is extended to the
case of a generalized asymptotically nonexpansive map in uniformly
convex Banach space having a weak duality mapping. Bose's result would
follow as a corollary to Theorem 3.1 of present work.
Classification :
54H25 47H10 54C60
@article{PIM_1989_N_S_45_59_a24,
author = {R. N. Mukherjee and Tanmoy Som and Vandana Verma},
title = {On {Weak} {Convergence} to the {Fixed} {Point} of a {Generalized} {Asymptotically} {Nonexpansive} map},
journal = {Publications de l'Institut Math\'ematique},
pages = {179 },
publisher = {mathdoc},
volume = {_N_S_45},
number = {59},
year = {1989},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_1989_N_S_45_59_a24/}
}
TY - JOUR AU - R. N. Mukherjee AU - Tanmoy Som AU - Vandana Verma TI - On Weak Convergence to the Fixed Point of a Generalized Asymptotically Nonexpansive map JO - Publications de l'Institut Mathématique PY - 1989 SP - 179 VL - _N_S_45 IS - 59 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PIM_1989_N_S_45_59_a24/ LA - en ID - PIM_1989_N_S_45_59_a24 ER -
%0 Journal Article %A R. N. Mukherjee %A Tanmoy Som %A Vandana Verma %T On Weak Convergence to the Fixed Point of a Generalized Asymptotically Nonexpansive map %J Publications de l'Institut Mathématique %D 1989 %P 179 %V _N_S_45 %N 59 %I mathdoc %U http://geodesic.mathdoc.fr/item/PIM_1989_N_S_45_59_a24/ %G en %F PIM_1989_N_S_45_59_a24
R. N. Mukherjee; Tanmoy Som; Vandana Verma. On Weak Convergence to the Fixed Point of a Generalized Asymptotically Nonexpansive map. Publications de l'Institut Mathématique, _N_S_45 (1989) no. 59, p. 179 . http://geodesic.mathdoc.fr/item/PIM_1989_N_S_45_59_a24/