A Structural Theorem for Distributions Having S-asymptotic
Publications de l'Institut Mathématique, _N_S_45 (1989) no. 59, p. 129
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
We prove that a distribution $T$ with an $S$-asymptotic
related to $c(h)$ and to the cone $\Gamma$ has on the set $B+\Gamma$ a
restriction which is a finite sum of derivatives of the functions
$F_i$, continuous in $B+\Gamma$ and having some properties which imply
that alle the $F_i(x+h)/c(h)$ converge uniformly for $x\in B$, when
$h\in\Gamma$ and $\|h\|\to\infty$. If we know more about the
distribution $T$ or about the cone $\Gamma$, then we can say more about
the properties of $F_i, B$ is the ball $B(0, r)$.
Classification :
46F10
@article{PIM_1989_N_S_45_59_a19,
author = {Bogoljub Stankovi\'c},
title = {A {Structural} {Theorem} for {Distributions} {Having} {S-asymptotic}},
journal = {Publications de l'Institut Math\'ematique},
pages = {129 },
publisher = {mathdoc},
volume = {_N_S_45},
number = {59},
year = {1989},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_1989_N_S_45_59_a19/}
}
Bogoljub Stanković. A Structural Theorem for Distributions Having S-asymptotic. Publications de l'Institut Mathématique, _N_S_45 (1989) no. 59, p. 129 . http://geodesic.mathdoc.fr/item/PIM_1989_N_S_45_59_a19/