A Structural Theorem for Distributions Having S-asymptotic
Publications de l'Institut Mathématique, _N_S_45 (1989) no. 59, p. 129 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

We prove that a distribution $T$ with an $S$-asymptotic related to $c(h)$ and to the cone $\Gamma$ has on the set $B+\Gamma$ a restriction which is a finite sum of derivatives of the functions $F_i$, continuous in $B+\Gamma$ and having some properties which imply that alle the $F_i(x+h)/c(h)$ converge uniformly for $x\in B$, when $h\in\Gamma$ and $\|h\|\to\infty$. If we know more about the distribution $T$ or about the cone $\Gamma$, then we can say more about the properties of $F_i, B$ is the ball $B(0, r)$.
Classification : 46F10
@article{PIM_1989_N_S_45_59_a19,
     author = {Bogoljub Stankovi\'c},
     title = {A {Structural} {Theorem} for {Distributions} {Having} {S-asymptotic}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {129 },
     publisher = {mathdoc},
     volume = {_N_S_45},
     number = {59},
     year = {1989},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_1989_N_S_45_59_a19/}
}
TY  - JOUR
AU  - Bogoljub Stanković
TI  - A Structural Theorem for Distributions Having S-asymptotic
JO  - Publications de l'Institut Mathématique
PY  - 1989
SP  - 129 
VL  - _N_S_45
IS  - 59
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_1989_N_S_45_59_a19/
LA  - en
ID  - PIM_1989_N_S_45_59_a19
ER  - 
%0 Journal Article
%A Bogoljub Stanković
%T A Structural Theorem for Distributions Having S-asymptotic
%J Publications de l'Institut Mathématique
%D 1989
%P 129 
%V _N_S_45
%N 59
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_1989_N_S_45_59_a19/
%G en
%F PIM_1989_N_S_45_59_a19
Bogoljub Stanković. A Structural Theorem for Distributions Having S-asymptotic. Publications de l'Institut Mathématique, _N_S_45 (1989) no. 59, p. 129 . http://geodesic.mathdoc.fr/item/PIM_1989_N_S_45_59_a19/