On Linear Topological Riez Spaces without Convexity Conditions
Publications de l'Institut Mathématique, _N_S_45 (1989) no. 59, p. 113
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
We consider whether the space associated with an l.t.R.s.
($E,C,t$) is l.t.R.s. We have shown that any $l$-ideal in an ultra-$DF$
(resp. countably quasibarrelled, locally topological,
ultra-$b$-barrelled, ultra $D_b$) Riesz space is space of the same type
with respect to the relative topology.
Classification :
46A99
@article{PIM_1989_N_S_45_59_a17,
author = {Stojan Radenovi\'c},
title = {On {Linear} {Topological} {Riez} {Spaces} without {Convexity} {Conditions}},
journal = {Publications de l'Institut Math\'ematique},
pages = {113 },
publisher = {mathdoc},
volume = {_N_S_45},
number = {59},
year = {1989},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_1989_N_S_45_59_a17/}
}
Stojan Radenović. On Linear Topological Riez Spaces without Convexity Conditions. Publications de l'Institut Mathématique, _N_S_45 (1989) no. 59, p. 113 . http://geodesic.mathdoc.fr/item/PIM_1989_N_S_45_59_a17/