On Linear Topological Riez Spaces without Convexity Conditions
Publications de l'Institut Mathématique, _N_S_45 (1989) no. 59, p. 113
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
We consider whether the space associated with an l.t.R.s.
($E,C,t$) is l.t.R.s. We have shown that any $l$-ideal in an ultra-$DF$
(resp. countably quasibarrelled, locally topological,
ultra-$b$-barrelled, ultra $D_b$) Riesz space is space of the same type
with respect to the relative topology.
Classification :
46A99
@article{PIM_1989_N_S_45_59_a17,
author = {Stojan Radenovi\'c},
title = {On {Linear} {Topological} {Riez} {Spaces} without {Convexity} {Conditions}},
journal = {Publications de l'Institut Math\'ematique},
pages = {113 },
year = {1989},
volume = {_N_S_45},
number = {59},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_1989_N_S_45_59_a17/}
}
Stojan Radenović. On Linear Topological Riez Spaces without Convexity Conditions. Publications de l'Institut Mathématique, _N_S_45 (1989) no. 59, p. 113 . http://geodesic.mathdoc.fr/item/PIM_1989_N_S_45_59_a17/