A Property of the Class of Functions Whose Derivative has a Positive Real Part
Publications de l'Institut Mathématique, _N_S_45 (1989) no. 59, p. 81
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
We give a subordination relation for the functions $f(z)/z$
where $f$ belongs to the class of analytic functions in $|z|1$ for
which Re$\{f'(z)\}>0$. Some consequences are also given.
Classification :
30C45
@article{PIM_1989_N_S_45_59_a11,
author = {Milutin Obradovi\'c},
title = {A {Property} of the {Class} of {Functions} {Whose} {Derivative} has a {Positive} {Real} {Part}},
journal = {Publications de l'Institut Math\'ematique},
pages = {81 },
publisher = {mathdoc},
volume = {_N_S_45},
number = {59},
year = {1989},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_1989_N_S_45_59_a11/}
}
TY - JOUR AU - Milutin Obradović TI - A Property of the Class of Functions Whose Derivative has a Positive Real Part JO - Publications de l'Institut Mathématique PY - 1989 SP - 81 VL - _N_S_45 IS - 59 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PIM_1989_N_S_45_59_a11/ LA - en ID - PIM_1989_N_S_45_59_a11 ER -
Milutin Obradović. A Property of the Class of Functions Whose Derivative has a Positive Real Part. Publications de l'Institut Mathématique, _N_S_45 (1989) no. 59, p. 81 . http://geodesic.mathdoc.fr/item/PIM_1989_N_S_45_59_a11/