Asymptotic Behavior of Partial Sums of Fourier-Legendre Series
Publications de l'Institut Mathématique, _N_S_44 (1988) no. 58, p. 49
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
If $f$ is defined and has a derivative of bounded variation
on $[-1,1]$ the main result of this paper is the asymptotic formula for
the partial sums of the Fourier-Legendre expansion of $f$:
$
S_n(f,x) = f(x)+(n\pi)^{-1}\sqrt{1-x^2}(f_R'(x)-f_L'(x))+o(1/n).
$
Here $f_R'(x)$ and $f_L'(x)$ are the right and the left derivatives of
$f$ at $x\in (-1,1)$.
Classification :
41A25 42C10 40A30
@article{PIM_1988_N_S_44_58_a7,
author = {R. Bojani\'c and Z. Divis},
title = {Asymptotic {Behavior} of {Partial} {Sums} of {Fourier-Legendre} {Series}},
journal = {Publications de l'Institut Math\'ematique},
pages = {49 },
publisher = {mathdoc},
volume = {_N_S_44},
number = {58},
year = {1988},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_1988_N_S_44_58_a7/}
}
TY - JOUR AU - R. Bojanić AU - Z. Divis TI - Asymptotic Behavior of Partial Sums of Fourier-Legendre Series JO - Publications de l'Institut Mathématique PY - 1988 SP - 49 VL - _N_S_44 IS - 58 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PIM_1988_N_S_44_58_a7/ LA - en ID - PIM_1988_N_S_44_58_a7 ER -
R. Bojanić; Z. Divis. Asymptotic Behavior of Partial Sums of Fourier-Legendre Series. Publications de l'Institut Mathématique, _N_S_44 (1988) no. 58, p. 49 . http://geodesic.mathdoc.fr/item/PIM_1988_N_S_44_58_a7/