A Remark on Subsets of Free Boolean Algebras
Publications de l'Institut Mathématique, _N_S_44 (1988) no. 58, p. 41

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

We prove that every subalgebra of cardinality $k$, cf$k>\omega$, of a given free Boolean algebra contains an independent set of the same cardinality. As a corollary of this theorem we get, using the Stone duality, some well known results about Cantor spaces.
Classification : 06E05 06E15
@article{PIM_1988_N_S_44_58_a5,
     author = {\v{Z}ikica Perovi\'c},
     title = {A {Remark} on {Subsets} of {Free} {Boolean} {Algebras}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {41 },
     publisher = {mathdoc},
     volume = {_N_S_44},
     number = {58},
     year = {1988},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_1988_N_S_44_58_a5/}
}
TY  - JOUR
AU  - Žikica Perović
TI  - A Remark on Subsets of Free Boolean Algebras
JO  - Publications de l'Institut Mathématique
PY  - 1988
SP  - 41 
VL  - _N_S_44
IS  - 58
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_1988_N_S_44_58_a5/
LA  - en
ID  - PIM_1988_N_S_44_58_a5
ER  - 
%0 Journal Article
%A Žikica Perović
%T A Remark on Subsets of Free Boolean Algebras
%J Publications de l'Institut Mathématique
%D 1988
%P 41 
%V _N_S_44
%N 58
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_1988_N_S_44_58_a5/
%G en
%F PIM_1988_N_S_44_58_a5
Žikica Perović. A Remark on Subsets of Free Boolean Algebras. Publications de l'Institut Mathématique, _N_S_44 (1988) no. 58, p. 41 . http://geodesic.mathdoc.fr/item/PIM_1988_N_S_44_58_a5/