On Connected Graphs with Maximal Index
Publications de l'Institut Mathématique, _N_S_44 (1988) no. 58, p. 29 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

Let ${\Cal H}(n,n+k)$ denote the set of all connected graps having $n$ vertices and $n+k$ edges ($k\geq 0$). The graphs in ${\Cal H}(n,n+k)$ with maximal index are determined (i) for certain small values of $n$ and $k$, (ii) for arbitrary fixed $k$ and large enough $n$. The results include a proof of a conjecture of Brualdi and Solheid [1].
Classification : 05C50
@article{PIM_1988_N_S_44_58_a3,
     author = {Drago\v{s} Cvetkovi\'c and Peter Rowlinson},
     title = {On {Connected} {Graphs} with {Maximal} {Index}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {29 },
     publisher = {mathdoc},
     volume = {_N_S_44},
     number = {58},
     year = {1988},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_1988_N_S_44_58_a3/}
}
TY  - JOUR
AU  - Dragoš Cvetković
AU  - Peter Rowlinson
TI  - On Connected Graphs with Maximal Index
JO  - Publications de l'Institut Mathématique
PY  - 1988
SP  - 29 
VL  - _N_S_44
IS  - 58
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_1988_N_S_44_58_a3/
LA  - en
ID  - PIM_1988_N_S_44_58_a3
ER  - 
%0 Journal Article
%A Dragoš Cvetković
%A Peter Rowlinson
%T On Connected Graphs with Maximal Index
%J Publications de l'Institut Mathématique
%D 1988
%P 29 
%V _N_S_44
%N 58
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_1988_N_S_44_58_a3/
%G en
%F PIM_1988_N_S_44_58_a3
Dragoš Cvetković; Peter Rowlinson. On Connected Graphs with Maximal Index. Publications de l'Institut Mathématique, _N_S_44 (1988) no. 58, p. 29 . http://geodesic.mathdoc.fr/item/PIM_1988_N_S_44_58_a3/