On Connected Graphs with Maximal Index
Publications de l'Institut Mathématique, _N_S_44 (1988) no. 58, p. 29
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
Let ${\Cal H}(n,n+k)$ denote the set of all connected graps
having $n$ vertices and $n+k$ edges ($k\geq 0$). The graphs in
${\Cal H}(n,n+k)$ with maximal index are determined (i) for certain
small values of $n$ and $k$, (ii) for arbitrary fixed $k$ and large
enough $n$. The results include a proof of a conjecture of Brualdi and
Solheid [1].
Classification :
05C50
@article{PIM_1988_N_S_44_58_a3,
author = {Drago\v{s} Cvetkovi\'c and Peter Rowlinson},
title = {On {Connected} {Graphs} with {Maximal} {Index}},
journal = {Publications de l'Institut Math\'ematique},
pages = {29 },
publisher = {mathdoc},
volume = {_N_S_44},
number = {58},
year = {1988},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_1988_N_S_44_58_a3/}
}
Dragoš Cvetković; Peter Rowlinson. On Connected Graphs with Maximal Index. Publications de l'Institut Mathématique, _N_S_44 (1988) no. 58, p. 29 . http://geodesic.mathdoc.fr/item/PIM_1988_N_S_44_58_a3/