Some Remarks on the Weak Topology of Locally Convex Spaces
Publications de l'Institut Mathématique, _N_S_44 (1988) no. 58, p. 155
In this note we show that if $(E,\|\cdot\|)$ is a Banach
space of infinite dimension then the spaces $(E,\sigma(E,E'))$ and
$(E',\sigma(E',E))$ are not spaces of type $DF$.
Classification :
46A05
@article{PIM_1988_N_S_44_58_a21,
author = {Stojan Radenovi\'c},
title = {Some {Remarks} on the {Weak} {Topology} of {Locally} {Convex} {Spaces}},
journal = {Publications de l'Institut Math\'ematique},
pages = {155 },
year = {1988},
volume = {_N_S_44},
number = {58},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_1988_N_S_44_58_a21/}
}
Stojan Radenović. Some Remarks on the Weak Topology of Locally Convex Spaces. Publications de l'Institut Mathématique, _N_S_44 (1988) no. 58, p. 155 . http://geodesic.mathdoc.fr/item/PIM_1988_N_S_44_58_a21/