Ramification Hypothesis Again
Publications de l'Institut Mathématique, _N_S_44 (1988) no. 58, p. 19
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
To the $RH$ (Ramification Hypothesis = Proposition 1 in
Kurepa [1935:2,3 p.~130] we join here proposition $P_0'(s.~3:2)$,
$P_{18},P_{19},\ldots,P_{45}$, each equivalent to $RH$; we stress in
particular $P_{18} := P_s:$ For every branching tree $T$ the width
$p_sT^2$ of the cardinal square of $T$ equals $p_sT$. (s.~1:0) and is
attained (s.~No.~3).
Classification :
04A10 05C38
@article{PIM_1988_N_S_44_58_a2,
author = {{\DJ}uro Kurepa},
title = {Ramification {Hypothesis} {Again}},
journal = {Publications de l'Institut Math\'ematique},
pages = {19 },
publisher = {mathdoc},
volume = {_N_S_44},
number = {58},
year = {1988},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_1988_N_S_44_58_a2/}
}
Đuro Kurepa. Ramification Hypothesis Again. Publications de l'Institut Mathématique, _N_S_44 (1988) no. 58, p. 19 . http://geodesic.mathdoc.fr/item/PIM_1988_N_S_44_58_a2/