Ramification Hypothesis Again
Publications de l'Institut Mathématique, _N_S_44 (1988) no. 58, p. 19 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

To the $RH$ (Ramification Hypothesis = Proposition 1 in Kurepa [1935:2,3 p.~130] we join here proposition $P_0'(s.~3:2)$, $P_{18},P_{19},\ldots,P_{45}$, each equivalent to $RH$; we stress in particular $P_{18} := P_s:$ For every branching tree $T$ the width $p_sT^2$ of the cardinal square of $T$ equals $p_sT$. (s.~1:0) and is attained (s.~No.~3).
Classification : 04A10 05C38
@article{PIM_1988_N_S_44_58_a2,
     author = {{\DJ}uro Kurepa},
     title = {Ramification {Hypothesis} {Again}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {19 },
     publisher = {mathdoc},
     volume = {_N_S_44},
     number = {58},
     year = {1988},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_1988_N_S_44_58_a2/}
}
TY  - JOUR
AU  - Đuro Kurepa
TI  - Ramification Hypothesis Again
JO  - Publications de l'Institut Mathématique
PY  - 1988
SP  - 19 
VL  - _N_S_44
IS  - 58
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_1988_N_S_44_58_a2/
LA  - en
ID  - PIM_1988_N_S_44_58_a2
ER  - 
%0 Journal Article
%A Đuro Kurepa
%T Ramification Hypothesis Again
%J Publications de l'Institut Mathématique
%D 1988
%P 19 
%V _N_S_44
%N 58
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_1988_N_S_44_58_a2/
%G en
%F PIM_1988_N_S_44_58_a2
Đuro Kurepa. Ramification Hypothesis Again. Publications de l'Institut Mathématique, _N_S_44 (1988) no. 58, p. 19 . http://geodesic.mathdoc.fr/item/PIM_1988_N_S_44_58_a2/