A Note on Certain Class Defined by Ruscheweyh Derivatives
Publications de l'Institut Mathématique, _N_S_43 (1988) no. 57, p. 59
The object of this paper is to prove new some results about
the class $M(n,\alpha)$ of analytic functions $f(z)$ in the unit disk,
defined by Ruscheweyh derivatives $D^nf(z)$. That is, a property of the
class $M(n,\alpha)$ and the subordination theorems for Ruscheweyh
derivatives $D^n f(z)$ are shown.
Classification :
30C45
@article{PIM_1988_N_S_43_57_a6,
author = {Milutin Obradovi\'c and Shigeyoshi Owa},
title = {A {Note} on {Certain} {Class} {Defined} by {Ruscheweyh} {Derivatives}},
journal = {Publications de l'Institut Math\'ematique},
pages = {59 },
year = {1988},
volume = {_N_S_43},
number = {57},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_1988_N_S_43_57_a6/}
}
Milutin Obradović; Shigeyoshi Owa. A Note on Certain Class Defined by Ruscheweyh Derivatives. Publications de l'Institut Mathématique, _N_S_43 (1988) no. 57, p. 59 . http://geodesic.mathdoc.fr/item/PIM_1988_N_S_43_57_a6/