A Geometric Characterization of Helicodial Surfaces of Constant Mean Curvature
Publications de l'Institut Mathématique, _N_S_43 (1988) no. 57, p. 137
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
We prove that a helicodial surface has constant mean
curvature if and only if its principal axes make an angle constant with
the orbits. Moreover, the arguments used lead to a simple proof of the
fact that all helicodial surfaces with constant mean curvature $H$ can
be isometrically deformed, trough helicodial surfaces of the same $H$,
into surfaces of revolution of the same $H$ (Delaunay surfaces).
Classification :
53A05
@article{PIM_1988_N_S_43_57_a16,
author = {Ioannis M. Roussos},
title = {A {Geometric} {Characterization} of {Helicodial} {Surfaces} of {Constant} {Mean} {Curvature}},
journal = {Publications de l'Institut Math\'ematique},
pages = {137 },
publisher = {mathdoc},
volume = {_N_S_43},
number = {57},
year = {1988},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_1988_N_S_43_57_a16/}
}
TY - JOUR AU - Ioannis M. Roussos TI - A Geometric Characterization of Helicodial Surfaces of Constant Mean Curvature JO - Publications de l'Institut Mathématique PY - 1988 SP - 137 VL - _N_S_43 IS - 57 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PIM_1988_N_S_43_57_a16/ LA - en ID - PIM_1988_N_S_43_57_a16 ER -
Ioannis M. Roussos. A Geometric Characterization of Helicodial Surfaces of Constant Mean Curvature. Publications de l'Institut Mathématique, _N_S_43 (1988) no. 57, p. 137 . http://geodesic.mathdoc.fr/item/PIM_1988_N_S_43_57_a16/