Some Properties of the Quasiasymptotic of Schwartz Distributions Part ii: Quasiasymptotic at 0
Publications de l'Institut Mathématique, _N_S_43 (1988) no. 57, p. 131
We give the definition of the quasiasymptotic behaviour at
$0$ of Schwartz distributions from $\Cal D'$ and compare this
definition with the definition of the quasiasymptotic of tempered
distributions at $0$ [2].
Classification :
46F10
@article{PIM_1988_N_S_43_57_a15,
author = {Stevan Pilipovi\'c},
title = {Some {Properties} of the {Quasiasymptotic} of {Schwartz} {Distributions} {Part} ii: {Quasiasymptotic} at 0},
journal = {Publications de l'Institut Math\'ematique},
pages = {131 },
year = {1988},
volume = {_N_S_43},
number = {57},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_1988_N_S_43_57_a15/}
}
TY - JOUR AU - Stevan Pilipović TI - Some Properties of the Quasiasymptotic of Schwartz Distributions Part ii: Quasiasymptotic at 0 JO - Publications de l'Institut Mathématique PY - 1988 SP - 131 VL - _N_S_43 IS - 57 UR - http://geodesic.mathdoc.fr/item/PIM_1988_N_S_43_57_a15/ LA - en ID - PIM_1988_N_S_43_57_a15 ER -
%0 Journal Article %A Stevan Pilipović %T Some Properties of the Quasiasymptotic of Schwartz Distributions Part ii: Quasiasymptotic at 0 %J Publications de l'Institut Mathématique %D 1988 %P 131 %V _N_S_43 %N 57 %U http://geodesic.mathdoc.fr/item/PIM_1988_N_S_43_57_a15/ %G en %F PIM_1988_N_S_43_57_a15
Stevan Pilipović. Some Properties of the Quasiasymptotic of Schwartz Distributions Part ii: Quasiasymptotic at 0. Publications de l'Institut Mathématique, _N_S_43 (1988) no. 57, p. 131 . http://geodesic.mathdoc.fr/item/PIM_1988_N_S_43_57_a15/