On a Problem of Erdös and Ivić
Publications de l'Institut Mathématique, _N_S_43 (1988) no. 57, p. 9 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

Let us usual $\omega(n)$ and $\Omega(n)$ denote the number of distinct prime factors and the number of total prime factors of $n$ respectively. Asymptotic formulas for the sum $\underset{2\leq n\leq x} \to \sum n^{-1/\Omega (n)}$ and the logarithm of the sum $\sum\limits{2\leq n\leq x} n^{-1/\omega(n)}$ are derived.
Classification : 10H25
@article{PIM_1988_N_S_43_57_a1,
     author = {Xuan Tizuo},
     title = {On a {Problem} of {Erd\"os} and {Ivi\'c}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {9 },
     publisher = {mathdoc},
     volume = {_N_S_43},
     number = {57},
     year = {1988},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_1988_N_S_43_57_a1/}
}
TY  - JOUR
AU  - Xuan Tizuo
TI  - On a Problem of Erdös and Ivić
JO  - Publications de l'Institut Mathématique
PY  - 1988
SP  - 9 
VL  - _N_S_43
IS  - 57
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_1988_N_S_43_57_a1/
LA  - en
ID  - PIM_1988_N_S_43_57_a1
ER  - 
%0 Journal Article
%A Xuan Tizuo
%T On a Problem of Erdös and Ivić
%J Publications de l'Institut Mathématique
%D 1988
%P 9 
%V _N_S_43
%N 57
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_1988_N_S_43_57_a1/
%G en
%F PIM_1988_N_S_43_57_a1
Xuan Tizuo. On a Problem of Erdös and Ivić. Publications de l'Institut Mathématique, _N_S_43 (1988) no. 57, p. 9 . http://geodesic.mathdoc.fr/item/PIM_1988_N_S_43_57_a1/