On Dinstances in Some Bipartite Graphs
Publications de l'Institut Mathématique, _N_S_43 (1988) no. 57, p. 3
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
Let $d(v|G)$ be the sum of the dinstances between a vertex
$v$ of a graph $G$ and all other vertices of $G$. Let $W (G)$ be the
sum of the distances between all pairs of vertices of $G$. A class
{\bf C}$(k)$ of bipartite graphs is found, such that $d(v|G)\equiv 1\pmod k$
holds for an arbitrary vertex of an arbitrary member of
{\bf C}$(k)$. Further, for two members $G$ and $H$ of {\bf C}$(k)$,
having equal cyclomatic number, $W(G)\equiv W(H)\pmod{2k^2}$.
Classification :
03C50
@article{PIM_1988_N_S_43_57_a0,
author = {Ivan Gutman},
title = {On {Dinstances} in {Some} {Bipartite} {Graphs}},
journal = {Publications de l'Institut Math\'ematique},
pages = {3 },
publisher = {mathdoc},
volume = {_N_S_43},
number = {57},
year = {1988},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_1988_N_S_43_57_a0/}
}
Ivan Gutman. On Dinstances in Some Bipartite Graphs. Publications de l'Institut Mathématique, _N_S_43 (1988) no. 57, p. 3 . http://geodesic.mathdoc.fr/item/PIM_1988_N_S_43_57_a0/