On Automorphism Groups of Non-associative Boolean Rings
Publications de l'Institut Mathématique, _N_S_41 (1987) no. 55, p. 49 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

The present paper is concerned with the study of $\Aut(B(n))$ the automorphism group of a non-associative Boolean rings $B(n)$, where $\left$ is a free 2-group on n generators $\{x_i\}$ $i=1,\dots,n$, subject with $X_i\circ X_j=X_i+X_j$ for $i\neq j$. It is shown that for $n$ even, Aut$(B(n))=S_{n+1}$ and for $n$ odd, Aut$(B(n))=S_n$. An example of a non-associative Boolean ring $R$ of order 8 is provided which shows that in general Aut$(R)$ is not a symmetric group.
Classification : 17A36
@article{PIM_1987_N_S_41_55_a5,
     author = {Sin-Min Lee},
     title = {On {Automorphism} {Groups} of {Non-associative} {Boolean} {Rings}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {49 },
     publisher = {mathdoc},
     volume = {_N_S_41},
     number = {55},
     year = {1987},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_1987_N_S_41_55_a5/}
}
TY  - JOUR
AU  - Sin-Min Lee
TI  - On Automorphism Groups of Non-associative Boolean Rings
JO  - Publications de l'Institut Mathématique
PY  - 1987
SP  - 49 
VL  - _N_S_41
IS  - 55
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_1987_N_S_41_55_a5/
LA  - en
ID  - PIM_1987_N_S_41_55_a5
ER  - 
%0 Journal Article
%A Sin-Min Lee
%T On Automorphism Groups of Non-associative Boolean Rings
%J Publications de l'Institut Mathématique
%D 1987
%P 49 
%V _N_S_41
%N 55
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_1987_N_S_41_55_a5/
%G en
%F PIM_1987_N_S_41_55_a5
Sin-Min Lee. On Automorphism Groups of Non-associative Boolean Rings. Publications de l'Institut Mathématique, _N_S_41 (1987) no. 55, p. 49 . http://geodesic.mathdoc.fr/item/PIM_1987_N_S_41_55_a5/