On Automorphism Groups of Non-associative Boolean Rings
Publications de l'Institut Mathématique, _N_S_41 (1987) no. 55, p. 49
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
The present paper is concerned with the study of
$\Aut(B(n))$ the automorphism group of a non-associative Boolean rings
$B(n)$, where $\left$ is a free 2-group on n generators
$\{x_i\}$ $i=1,\dots,n$, subject with $X_i\circ X_j=X_i+X_j$ for
$i\neq j$. It is shown that for $n$ even, Aut$(B(n))=S_{n+1}$ and for
$n$ odd, Aut$(B(n))=S_n$. An example of a non-associative Boolean ring $R$
of order 8 is provided which shows that in general Aut$(R)$ is not a
symmetric group.
Classification :
17A36
@article{PIM_1987_N_S_41_55_a5,
author = {Sin-Min Lee},
title = {On {Automorphism} {Groups} of {Non-associative} {Boolean} {Rings}},
journal = {Publications de l'Institut Math\'ematique},
pages = {49 },
year = {1987},
volume = {_N_S_41},
number = {55},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_1987_N_S_41_55_a5/}
}
Sin-Min Lee. On Automorphism Groups of Non-associative Boolean Rings. Publications de l'Institut Mathématique, _N_S_41 (1987) no. 55, p. 49 . http://geodesic.mathdoc.fr/item/PIM_1987_N_S_41_55_a5/