On Automorphism Groups of Non-associative Boolean Rings
Publications de l'Institut Mathématique, _N_S_41 (1987) no. 55, p. 49

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

The present paper is concerned with the study of $\Aut(B(n))$ the automorphism group of a non-associative Boolean rings $B(n)$, where $\left$ is a free 2-group on n generators $\{x_i\}$ $i=1,\dots,n$, subject with $X_i\circ X_j=X_i+X_j$ for $i\neq j$. It is shown that for $n$ even, Aut$(B(n))=S_{n+1}$ and for $n$ odd, Aut$(B(n))=S_n$. An example of a non-associative Boolean ring $R$ of order 8 is provided which shows that in general Aut$(R)$ is not a symmetric group.
Classification : 17A36
@article{PIM_1987_N_S_41_55_a5,
     author = {Sin-Min Lee},
     title = {On {Automorphism} {Groups} of {Non-associative} {Boolean} {Rings}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {49 },
     publisher = {mathdoc},
     volume = {_N_S_41},
     number = {55},
     year = {1987},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_1987_N_S_41_55_a5/}
}
TY  - JOUR
AU  - Sin-Min Lee
TI  - On Automorphism Groups of Non-associative Boolean Rings
JO  - Publications de l'Institut Mathématique
PY  - 1987
SP  - 49 
VL  - _N_S_41
IS  - 55
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_1987_N_S_41_55_a5/
LA  - en
ID  - PIM_1987_N_S_41_55_a5
ER  - 
%0 Journal Article
%A Sin-Min Lee
%T On Automorphism Groups of Non-associative Boolean Rings
%J Publications de l'Institut Mathématique
%D 1987
%P 49 
%V _N_S_41
%N 55
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_1987_N_S_41_55_a5/
%G en
%F PIM_1987_N_S_41_55_a5
Sin-Min Lee. On Automorphism Groups of Non-associative Boolean Rings. Publications de l'Institut Mathématique, _N_S_41 (1987) no. 55, p. 49 . http://geodesic.mathdoc.fr/item/PIM_1987_N_S_41_55_a5/