On Automorphism Groups of Non-associative Boolean Rings
Publications de l'Institut Mathématique, _N_S_41 (1987) no. 55, p. 49
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
The present paper is concerned with the study of
$\Aut(B(n))$ the automorphism group of a non-associative Boolean rings
$B(n)$, where $\left$ is a free 2-group on n generators
$\{x_i\}$ $i=1,\dots,n$, subject with $X_i\circ X_j=X_i+X_j$ for
$i\neq j$. It is shown that for $n$ even, Aut$(B(n))=S_{n+1}$ and for
$n$ odd, Aut$(B(n))=S_n$. An example of a non-associative Boolean ring $R$
of order 8 is provided which shows that in general Aut$(R)$ is not a
symmetric group.
Classification :
17A36
@article{PIM_1987_N_S_41_55_a5,
author = {Sin-Min Lee},
title = {On {Automorphism} {Groups} of {Non-associative} {Boolean} {Rings}},
journal = {Publications de l'Institut Math\'ematique},
pages = {49 },
publisher = {mathdoc},
volume = {_N_S_41},
number = {55},
year = {1987},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_1987_N_S_41_55_a5/}
}
Sin-Min Lee. On Automorphism Groups of Non-associative Boolean Rings. Publications de l'Institut Mathématique, _N_S_41 (1987) no. 55, p. 49 . http://geodesic.mathdoc.fr/item/PIM_1987_N_S_41_55_a5/